
Coordination in

Open Distributed Systems

vorgelegt von

Diplom�Informatiker
Robert Tolksdorf

Vom Fachbereich �� � Informatik �
der Technischen Universit�at Berlin

zur Erlangung des akademischen Grades

Doktor�Ingenieur
� Dr��Ing� �

genehmigte Dissertation

Promotionsausschu�	

Vorsitzender	 Prof� Dr� rer� nat� Peter Pepper
Berichter	 Prof� Dr� rer� nat� Bernd Mahr
Berichter	 Prof� Dr��Ing� Klaus�Peter L�ohr
Berichter	 Prof� Dr� Paolo Ciancarini

Tag der wissenschaftlichen Aussprache	 �
� Dezember ����

Berlin ����

D ��

http://www.robert-tolksdorf.de

tolk
Rechteck

tolk
Rechteck

tolk
Textfeld
Reproduction of the printed version of 1995
Copyright © Robert Tolksdorf
Bismarckstr. 18
14109 Berlin

This work is licenced unter a
Creative Commons Attribution NonCommercial NoDerivatives 4.0 licence
http://creativecommons.org/licenses/by-nc-nd/4.0/

tolk
Stempel

Coordination in

Open Distributed Systems

Robert Tolksdorf

http://www.robert-tolksdorf.de

Contents

� Introduction� A view on coordination in computing systems �

� Coordination focussing on data�exchange� Linda ��

�� Linda�s tuple�space and its operations ��

�
 Two examples of Linda�programs ��

�� Tuple�space predicates and multiple tuple�spaces ��

�� Discussion ��

�� Bibliographic remarks �

� Coordination focussing on process synchronization� Alice ��

��� Tuples and �elds in Alice

��
 Agents in Alice
�
��
�� Local agent�spaces
�
��� Process synchronization with Alice
�
����� Coordinating conditional execution
�
����
 Coordinating loops ��
����� Synchronization of groups of agents ��
��� Turing machines with Alice �

��� Historical and bibliographic remarks ��

� Coordination of services in open distributed systems� Laura ��

��� Design motivation ��
��
 Identi�cation of services ��
��� On naming in open distributed systems �

��� Laura�s operations ��
��� Bibliographic remarks ��

	 Prescribing Laura formally 		

��� A type system with subtyping �

����� Rules for type�equivalence �

����
 Rules for subtyping ��
����� The semantics of Laura�s service�type de�nitions ��

�

http://www.robert-tolksdorf.de

��
 A formal model of coordination	 The Bag�Machine
�
��� Technical preliminaries for the Bag�Machine
�
����� Labeled event structures
�
����
 Open labeled event structures

��� A labeled event structure for the Bag�Machine
�
��� The behavior of agents using the Bag�Machine
�
��
 Embedding coordination and computation languages ��
��� Example	 Specifying Linda with the Bag�Machine �

��� The semantics of Laura�s operations ��
��� Bibliographic remarks ��

 An experimental implementation of Laura �

�� A C�Embedding	 C�Laura ��

�
 A csh�embedding	 csh�Laura ��

�� The STL�precompiler ��

�� The Laura�library ��

�� The Bag�Machine instance ��

�
 A distributed Bag�Machine ��

�
�� Protocols used for the distributed Bag�Machine ��

�
�
 Protocols for joining and leaving nodes ���

�
�� Extended Bag�Machine�organizations ���

�� Experience with the prototype ��

�� Bibliographic remarks ��

� Outlook and perspectives ���

� Acknowledgments ���

Appendix

A Laura
s subtyping tested by Alice�agents ���

A�� Testing records ���
A�
 Testing operation signatures and interfaces ���
A�� Example executions ���

B Bibliography ���

http://www.robert-tolksdorf.de

Chapter �

Introduction� A view on

coordination in computing systems

C
omputer science and information technology undergo a signi�cant change in what
paradigm guides the organization of computing systems	 Isolated or centralized

machines are rapidly replaced and integrated by networked� distributed computing sys�
tems� The scale of distribution is immense � it crosses organizational structures and con�
tinents� Network and telecommunication technology is being installed that transforms
computing systems from locally available equipment dedicated to speci�c purposes into
universal access points to information from all over the world allowing users to perform
tasks that are beyond the computation potential of the machine used� �Information�
superhighways� and their utilization are often expected to have a social impact that is
sometimes compared to the invention of print or even �re�

The technological development directs a spotlight on the questions concerning the co�
ordination of activities in such systems� How should they be structured� what paradigms
should guide communication and synchronization in these systems� how should services
be provided and used�

The systems can be discussed using the following model of cooperating agents��
the agent�world as a conceptual basis� In the agent�world agents act in the context of
some overall goal� re�ected by some notion of bene�t for agents� The concepts of the
agent�world are as follows	

� Agent An active entity in the agent�world�

�The term �agent� here should not be confused with its understanding in the AI�community as in
blackboard systems�

�

http://www.robert-tolksdorf.de

� Action Something that happens�

� Process A sequence of actions executed by an agent�

� Synchronization Actions concerning the start� blocking or unblocking and the
termination of processes�

� Communication Actions concerning the exchange of data amongst agents�

� Service Results from an interaction of agents distinguished as service�user and
service�provider� A service is of bene�t to the service�user by utilizing the results
of activities of the service�provider� User and provider share an agreement on
communication of data and synchronization of processes�

Instances of the agent�world can be found in many �elds of computer science� An
imperative program� for example� is an instance of our model in that procedures are
agents as de�ned by the program�text of the procedure�body� A procedure�call involves
the communication of arguments and results and starts a process by the execution of
the procedure� The calling procedure uses the service provided by the called procedure
to achieve some goal� Both share an agreement that includes rules on parameter�passing
mechanisms� such as stack�usage conventions� and data�representation� for example�

However� the agent�world model is more suited to describe systems in which agents
are spatially dispersed and act autonomously� An example for such a system could
be that of a distributed object system� Here� objects can be considered agents whose
actions are de�ned by the implementation of methods� Processes then are executions of
methods and communication means sending a message to an object� Synchronization
actions cover the remaining mechanisms in object invocation� A service occurs when an
object invokes methods of another object� where the invoker is the service�user and the
invoked object the provider� The agreement includes� as an example� that only methods
o�ered at some object interface are invoked or that invocation at all is admitted�

Our model focusses on the concerns involved in process synchronization� in commu�
nication and in how services are coordinated� It abstracts from the outform of activities
in the execution of processes� We use the term coordination to refer to actions for
synchronization� communication and service�usage and �provision and the term compu�
tation for actions of processes� In this thesis� we focus on coordination solely and deal
with it separated from computation�

The separation does not mean that computation and coordination are independent or
dual concepts� In contrast� they are orthogonal in the sense that they are two dimensions
under which an agent�world can be discussed separatly but which do not provide a
complete view on a system� The imcompleteness becomes obvious in that it makes no
sense to provide a service without communicating the results to the service�user� On
the other hand� coordination make no sense if there are no activities to be coordinated�

Coordination has several aspects such as e�ciency in terms of speed or suitablitiy for
speci�c purposes such as multi�media requirements� We focus on the aspect of linguistic
means to express the concerns of coordination as well as on their implementation� Given
the conceptual separation of coordination and computation� we deal with coordination
languages as opposed to computation languages� We do not attempt to design parallel

http://www.robert-tolksdorf.de

or distributed programming languages� but take the view that the separation of concerns
leads to two families of languages�

Experimental

implementation

of LAURA

�����������������������
�����
����
�����
�

������������������������
�����
�����
����

������������������������
�����
�����
����

������������������������
�����
�����
����

������������������������
����
�����
����� ������������������������

����
�����
�����

��

������������������������
�����
�����
����

���

�������������������������
������
������
�

��

�������������������������
������
������
�

���
����������������������

�

Coordination

Synchronization

Chapter
 Chapter � Chapter �

Coordination

focussing on

process synchronization

Chapter

Chapter �

Coordination

data�exchange

Appendix A

Expressing LAURA�s

coordination needs

with ALICE

focussing on

LINDA ALICE

services in open systems

focussing on

Coordination

LAURA

of LAURA

Formal prescription

Communication Services

Outlook

Chapter �

Chapter �

Figure ���	 The structure of this thesis

http://www.robert-tolksdorf.de

The intention with this thesis is to verify this conception against the problem of
coordinating services in open distributed systems� We do so by reviewing and designing
coordination languages that provide linguistic means to express coordination actions�

The concerns we identi�ed above with the term coordination will be represented in
this thesis by three coordination languages� First� we discuss the language Linda �
developed at Yale University starting in the early ����s � and then present Alice� a
design of our own� Linda can be taken as a coordination language that focusses on the
communication aspect of process coordination while Alice puts more emphasis on the
synchronization aspect� As the main contribution of this thesis� we then lay out the
design and implementation of a coordination language for services in open distributed
systems� called Laura�

It shows that the separate consideration of coordination is an enabling conceptual
basis to meet requirements of open distributed systems� such as heterogeneous architec�
tures and the support of interoperability amongst programming languages�

The choice of an uncoupled communication style proves to be adequate to cope with
the dynamics of open systems� By an experimental implementation of the language
Laura we show that its design is implementable and has several advantages�
At least two lines of research provide a context to our work	

� First� the intention of the Linda�group as outlined in �Gelernter� ��� meets our
interest in coordination as put in the agent�world and has put the �rst conceptual
basis of separating coordination and computation and of focussing on the design
of coordination languages� However� the achievement of Linda is to provide a
coordination language for parallel systems� Our approach is novel in that we focus
on open systems which impose quite di�erent requirements�

� Open distributed systems have been the focus of the standardization e�orts un�
dertaken in the ISO which have resulted in the standard on open distributed pro�
cessing� ODP �ISO�IEC JTC��SC
��WG�� ��a�� ODP provides a model which is
to be instantiated by a number of major computer industry vendors being mem�
bers of the object management group consortium OMG ��OMG���� �OMG�
� � An
example for such a concrete industrial product is IBM�s DSOM ��IBM��� � Our
approach contrasts these developments as they neither employ a conceptual basis
of separated focus on coordination nor provide a formal basis for their solutions�

Figure ��� shows the structure of this thesis and the connections amongst the chapters�
The model of coordination given in this chapter serves as a structure for this thesis� Our
focus is on the coordination of services in open distributed systems� which is re�ected
by the detail in which we investigate in this aspect�

� In chapter
 we focus on the communication aspect of coordination� We do so by
reviewing the coordination language Linda which introduces a tuple�space and
operations that manipulate it� We describe them and give examples for Linda�
programs� We review features such as tuple�space predicates and multiple tuple�
spaces as found in the di�erent versions of Linda� Finally� we discuss why Linda�s
concepts are of major importance when investigating in the communication aspect
of coordination�

http://www.robert-tolksdorf.de

� Linda does not contain a model of process�synchronization but inherits it from
some host�language� In chapter � the synchronization aspect of coordination is our
focus� We introduce our coordination language Alice which includes a process
model and detail out its design� We then demonstrate how synchronization prob�
lems from imperative programming can be dealt with in a concurrent coordination
language such as Alice on a very �ne grain� We show that the separated concept
of coordination is orthogonal to computation by de�ning agents in Alice that are
capable of interpreting Turing�machines�

� The coordination of services is the topic of the following chapters� In chapter �
we introduce our coordination language Laura� First� we lay out its design ra�
tionale and discuss the issues of identi�cation of services and of naming in open
distributed systems� An informal description of Laura�s operations and how they
work concludes this chapter�

� An informal description requires a formal prescription that identi�es correct im�
plementations� For Laura it is presented in chapter �� We use typed interfaces for
the identi�cation of services in Laura� We formalize the notations by de�ning a
type system which takes into account the considerations on naming we presented
before� The type system includes a subtyping relation and gives semantics to
interface de�nitions of services�

� The coordination languages in this thesis all make use of the manipulation of
multisets of some elements� We formalize the mechanism by introducing an un�
derstanding of multisets which uses ��structures to talk in a uniform framework
on elements of a multisets and their multiple instances� We then give a true
concurrent de�nition of a process called the Bag�Machine that implements the ma�
nipulation of multisets by labeled event structures� We extend these structures to
allow us to de�ne the behavior of agents that make use of the Bag�Machine�

� We demonstrate this mechanism with a formal de�nition of Linda� Then� we
de�ne the semantics of Laura by expressing its operations in terms of the Bag�
Machine�

� After this formal prescription� we demonstrate that Laura is implementable by an
experimental prototype� It includes embeddings in two programming languages�
a pre�compiler and a library� We lay out an architecture for a distributed im�
plementation and describe its protocols� We discuss how our architecture can be
extended and what experiences demonstrated the well�suitability of our approach
for a solution to the coordination problem in open distributed systems�

� To conclude� we give an outlook on the use of our coordination model and the lan�
guages Alice and Laura� We identify further issues such as directions towards a
more general model of the design� application and exploitation of open distributed
systems in chapter ��

http://www.robert-tolksdorf.de

� To round o�� we show in appendix A how the implementation of Laura has
coordination needs that can be satis�ed by Alice� In particular� we de�ne Alice�
agents that perform tests on the subtyping mechanism required for Laura�

Berlin� October ����

http://www.robert-tolksdorf.de

Chapter �

Coordination focussing on

data�exchange� Linda

H
aving presented our model of coordination in the introduction� we review in this
chapter the coordination language Linda which puts special emphasis on the

communication aspect of coordination in parallel systems�

Linda is a language for coordination in parallel systems that has been studied from
about the midst�eighties� The underlying view of a parallel system is that of an asyn�
chronous ensemble� in which all work in the system is performed by agents� A set of
agents forms an ensemble by coordinating their activity asynchronously via some me�
dia� The actual work they perform is carried out independently� asynchronously and
autonomously�

Linda introduces an uncoupled communication paradigm which is based on the
abstraction of a tuple�space� It acts as a shared store of data which is kept as tuples that
are addressed associatively by a pattern used in a matching�mechanism to select a tuple�
It is unknown� which agent put the tuple into the tuple�space� thus communication
partners remain anonymous to each other�

We chose Linda as the language reviewed for the communication aspect of coor�
dination for the following reasons� First� Linda puts emphasis on coordination only�
This separation of concerns leads to simplicity and does not introduce concepts that are
beyond the scope of this thesis�

Linda takes an abstract view on coordination on a high level� It does not imply
restrictions on concrete implementations and thus allows it to discuss the communication
aspect on a conceptual level�

�

http://www.robert-tolksdorf.de

p p p

The coordination mechanisms has been proven to be fundamental and powerful com�
pared to other mechanisms ��Polze and L�ohr� �
� � It has been shown that well known
communication paradigms can be emulated by Linda ��Carriero and Gelernter� ��a�
thus making Linda a worthful candidate for a discussion of the communication aspect
of coordination�

This chapter is organized as follows	 First� we give an overview on the Linda tuple�
space and its operations in section
�� and illustrate it with two examples in section
�
�
In section
�� we describe additional operations of an earlier version of Linda and some
extensions of the latest version� We discuss Linda in section
�� in the context of our
agent�world and give pointers to Linda�related work in section
���

��� Linda�s tuple�space and its operations

Linda is a coordination language for parallel programming which was �rst introduced
by David Gelernter in his doctoral thesis ��Gelernter� �
� and presented to a wider
audience in �Gelernter� ���� one of the �rst implementations is described in �Carriero
and Gelernter� �
�� In the following� we give an informal outline of this coordination
language� the bibliographic remarks give pointers to further details and to the family of
Linda�like languages that has been stimulated by the work at Yale University�

In Linda� coordination is performed by operations on an intermediate medium�
called the tuple�space� Agents perform either computation expressed in some program�
ming language or coordinate with other agents using Linda�s tuple�space operations�
Thus� a Linda�system is a combination of a conventional programming language with
the Linda operations� called a Linda embedding�

The tuple�space is an unordered collection of tuples that are generated and consumed
by agents� A tuple is an ordered set of tuple��elds notated in angle brackets� What can
be used as a tuple��eld depends on the embedding� In the following� we assume a C�
Linda� meaning the programming language C with the Linda�operations embedded�
We use a syntax which neglectable di�ers from that of the Yale�implementation��

Examples of tuples in such an embedding are <"Robert",10.4> or <’c’,TRUE,20>�
The �rst is a two �elded tuple� consisting of a string��eld with the value Robert and
a �oating�point �eld valued ����� The second example consists of a character��eld with
value c� a boolean��eld of value true and a
� in an integer �eld� Fields that have a
value as their contents are called actuals�

Tuples can be emitted to the tuple�space using Linda�s out�operator� A statement
that puts the �rst example�tuple into the tuple�space is out(<"robert",10.4>);�
When the tuple out�ed is constructed and passed to the tuple�space� the agent executing
it continues with its operations without blocking�

In a Linda�embedding the values can also be determined by resolving a binding
of a program�variable� Thus� if i is declared as an int and has currently the value

�� then out(<’c’,TRUE,i>) puts the tuple <’c’,TRUE,20> into the tuple�space�

�We use an explicit notation for tuples �out(<"abc",10>)� instead of adopting the C�syntax for
argument�lists �out("abc",10)� and refer to types �e�g� bool� that are not implemented in C�
Linda�

http://www.robert-tolksdorf.de

p p p

References to variables are always resolved and never exist in the tuple�space� only
within the agent�

Tuples can be retrieved from the tuple�space by an agent performing an in�operation�
It has to provide a template as an argument which is a tuple�pattern used for a matching�
mechanism� This mechanism identi�es tuples that match the template and selects one
for withdrawal from the tuple�space�

A template is an ordered collection of tuple��elds just like a tuple but with the
exception that some �elds can be �lled with formals that act as place�holders for any
value of a speci�c type� An example of a template is <’c’,?bool,?int>� Here� the
�rst template��eld is an actual character with the value c and the following two �elds
are formals� marked with the tag ?� The �rst is a placeholder for any value of the type
bool� the second one for any value of type int�

The matching of a template and a tuple is guided by the matching�relation� A tuple
t and a template t� are matching� if the following conditions hold	

� t and t� have the same number of �elds�

�� Each �eld from t matches the corresponding �eld from t��

�� Any actual matches an actual with equal value�

�� Any formal matches an actual of the same type�

So the operation in(<’c’,?bool,?int>) can retrieve the second example tuple
above� but not the �rst� An agent that performs an in is blocked until a matching
tuple is entered to the tuple�space by another agent performing an out� If multiple
matching tuples are found� one is chosen non�deterministically�

In a Linda�embedding� the values of �elds of the retrieved tuple can be bound to
program variables� If the variables b and i are declared to be variables of type bool
and int� resp�� then after retrieving the above tuple with in(<’c’,?b,?i>)� b would
have the value TRUE and i the value
��

The third Linda�operation rd is identical to in with the exception that the tuple
matched is not removed from the tuple�space� All synchronization and communication
amongst agents is performed by depositing and retrieving tuples to and from the tuple�
space using out� in and rd�

Given that multiple agents perform these operations concurrently� choices have to
be made about which speci�c tuple is selected in the matching process and which agent
is unblocked by returning it� Linda does not make any guarantees on fairness of these
choices� It leaves the possibility open that a tuple is held forever in the tuple�space
and never selected and that an agent is treated unfair by preferring other agents in the
unblocking�

The fourth Linda�operation eval is used for the creation of parallel activity� It
takes an active tuple as an argument� Here� the �elds can be actuals or references to
functions� The non�blocking eval�operation starts the evaluation of these functions in
parallel� Their result values then replace the function�references as actuals� When all
�elds have been evaluated� the resulting tuple is put into the tuple�space�

http://www.robert-tolksdorf.de

p p g

Let as an example� the function square be de�ned as taking an integer as parameter
and resulting in an integer which is the parameter multiplied with itself� Then the oper�
ation eval(<a,square(a),b,square(b)>) starts the evaluation of square(a)
and square(b) in parallel to the continuing activity of the agent performing the eval�
Let a have the value
 and b the value �� then the tuple <2,4,3,9> is �nally put into
the tuple�space�

��� Two examples of Linda�programs

To give an impression of how Linda�programs look like� Figure
���a shows a C�Linda
program for the well�known dining philosopher�s problems� taken from �Carriero and
Gelernter� ��b�� It is demonstrating the synchronization aspect of Linda�s constructs�

phil(i)
int i;

{
while(1) {

think();
in("room ticket");
in("chopstick", i);
in("chopstick", (i+1)%Num);
eat();
out("chopstick", i);
out("chopstick", (i+1)%Num);
out("room ticket");

}
}

initialize()
{
int i;
for (i=0; i < Num; i++) {

out("chopstick", i);
eval(phil(i));
if (i < (Num-i))
out("room ticket");

}
}

�a� Dining philosophers

master()
{
while (get(new sequence)) {

out("task", new sequence);
if (++tasks> HIGH WATER MARK)
do {
in("result",?result);
update best results list(result);

} while (--tasks >LOW WATER MARK)
}
while (tasks--) {
in("result",?result);
update best results list(result);

}
report results();

}

searcher()
{
do {
in("task",?seq);
value=compare(seq,target);
out("result", value);

} while (search is not complete())
}

�b� DNA�sequence matching

Figure
��	 Examples in C�Linda

http://www.robert-tolksdorf.de

p p p p p p

initialize creates Num tuples to model the chopsticks and Num philosopher
agents with out and eval� resp� Also� it generates Num-1 room�tickets as tuples
with out which equals the number of philosophers that can try to eat without dead�
locking� A philosopher agents tries to get a room ticket with in which allows him to
get the chopsticks with in� The chopstick tuples are numbered� thus the notion of the
�left� and �right� chopstick is encoded in that index� After eating� the agent releases
the chopsticks and its ticket with out� The example shows� how a semaphore�oriented
synchronization is coordinated with Linda��

Another example that combines synchronization and communication is shown in
�gure
���b � which is a parallel DNA sequence search� There is one agent master that
has to �nd a list of best matching DNA sequences stored in a database with respect to
a new sequence� It uses a couple of searcher agents that are initialized with the new
sequence in target�

Each searcher waits for a request to perform a comparison of the initialized sequence
target with another by doing an in� The sequence to be compared is read into a
formal �eld� The result of the comparison is emitted as a tuple with an out�

The master scans linearly through the database and out�s for each entry a tuple with
the database sequence� The number of outstanding tuples is limited by HIGH_WATER_MARK
and LOW_WATER_MARK� As the searchers are activated by the presence of a matching
tuple� the comparisons are performed� The master collects the results with in and pro�
duces a list containing the best comparison values of the new sequence with those stored
in the database� Note that only the quantity of the similarity of the new sequence to
those in the database is collected and the best matching sequence cannot be told from
the result�

��� Tuple�space predicates and multiple tuple�spaces

The initial Linda�design had two additional predicates� inp and rdp ��Carriero and
Gelernter� ��a� � They were de�ned as true� if a tuple matching a given pattern was
available in the tuple�space� In addition� in this case the binding of values to formals was
performed so that the operations are rather non�blocking versions of in and rd than
predicates� Both operations were later dropped because their semantics was unclear and
their practical use was considered doubtable�

�Gelernter� ��� describes the �nal component of Linda in its current de�nition�
multiple tuple�spaces� It introduces a new type� a �fth operation and a naming scheme
to the language� The idea is to make tuple�spaces �rst class objects in the tuple�space�
Thereby the �at structure of a single global tuple�space is replaced by a hierarchy of
tuple�spaces�

The new type is called ts and identi�es a tuple�space� The embedding has to take
care of the binding of a value of type ts to program variables� The only operation
that can generate a tuple�space is tsc for tuple�space�create� It is evaluated with an
eval and results in a new tuple�space� It is located in the �current tuple�space��

��Carriero and Gelernter	
�b� point out that this example can run into livelocks because of di
erent
speeds of agents and because of the lack of a notion of fairness in Linda�

http://www.robert-tolksdorf.de

p p p p p p

meaning the tuple�space in which the agent executing the tsc operates� By executing
eval(tsc(Q))� a new and empty tuple�space is created and can be referenced by the
name Q�

Linda�operations can be pre�xed by a name that references a tuple�space� Thus�
Q.out(<"Robert",10.4>) inserts the tuple into the newly created tuple�space Q
instead of the global tuple�space� The hierarchy of tuple�spaces can be accessed by
a hierarchical naming scheme� where tuple�space names are combined with /� and
names can be relative to the current space or absolute to some root� After performing
Q.eval(tsc(P))� the newly created tuple�space is accessed by Q/P.in(<"Robert",?float>)�
Given that Q was created in the tuple�space R located at the top of the hierarchy� it
can be accessed by /R/Q/P.in(<"Robert",?float>)� Figure
�
 illustrates this
situation�

/R
/R/Q

/R/Q/P

h�Robert������i

Figure
�
	 Multiple tuple spaces Q� R and P

Tuple�spaces themselves are represented as tuples� Thus the Linda operations can be
applied to them� If q is a program variable of type ts� then the operation in(<?q>)
will search for a tuple representing a tuple�space� It then removes it completely and
binds an image of the tuple�space to q� If there are active tuples under evaluation
at the time such an in occurs� these are freezed and restarted when an out(q) is
issued� The destruction of a tuple�space requires no special operation� it is achieved by
in(<?ts>)�

Tuple��elds can also be of type ts� Tuple�spaces on the same level of the hierarchy
can be distinguished by adding additional �elds as in eval(<"Q",tsc(Q)>); and
eval(<"R",tsc(R)>)� Performing in(<"Q",?q>) then retrieves the �rst one�

�Gelernter� ��� gives examples and points out that tsc can be attributed� making
tuple�spaces persistent for example� As a consequence� �les from an operating system
can be represented by a persistent tuple�space� Furthermore� by in�ing a tuple�space
with active tuples and putting it into a persistent tuple�space with out� running pro�
grams and �le systems are uni�ed�

http://www.robert-tolksdorf.de

��� Discussion

In the previous sections we reviewed Linda as a coordination language with special
emphasis on the communication of data� It will serve as a starting point for the design
of two other coordination languages in the following chapters that share some charac�
teristics with Linda�

The following list identi�es characteristic concepts of Linda that we take as key�
issues for solutions of the coordination problem in any of the aspects we de�ned in
chapter ��

� Uncoupling of agents The basic paradigm of communication is uncoupled in
that the sending and receiving agents do not know about each other� This mech�
anism therefore does not introduce additional concepts on the identi�cation of
agents� It is more abstract as the directed communication paradigm� which can
well be expressed� as demonstrated in papers referenced below�

� Associative addressing An agent willing to receive data uses a pattern or tem�
plate to address is associatively� It therefore does specify� what data it is interested
in� not what message is wants to receive� The template makes a semantic state�
ment� whereas �deliver message !���
 to me� is a syntactic statement� Again�
this mechanism is abstract� as the syntactic identi�cation can well be encoded in
a template�

� Nondeterminism Associative addressing by templates is non�deterministic� as
it does not prescribe the choice of which data to select� During execution the
choice �nally has to be made� as concrete coordination has to be deterministic�
However� the necessary choice is left to some mechanism �behind the stages�� This
late decision is appropriate in a general view on coordination in which dynamic
information should guide decisions� Again� the prescription of the choice can be
encoded within the addressing� such as by introducing unique identi�ers as �elds
in a template�

� Concurrency Agents being coordinated in a system by Linda perform their
work implicitly concurrently� There are no assumptions implied in what order
they execute computation or when they communicate� The only requirement is
induced by the potential blocking of in�rd	 Data must be sent by some agent
before it can be received�

� Separation of concerns Linda was of the �rst languages to focus on coordina�
tion solely� It demonstrates that this separation of concerns leads to a solution
of a coordination problem independent of how computation is performed� The
bene�ts of this separation are concentration on a single problem and abstraction
from the solution of other problems such as computation� Linda�s authors make
the claim that thereby goals such as simplicity and generality in language�design
are matched�

http://www.robert-tolksdorf.de

g p

��� Bibliographic remarks

Linda has initiated a variety of research activities� In this section we review the projects
at Yale University as well as a number of reported work at other sites�

The classi�cation of three main parallel programming styles in �Carriero and Gel�
ernter� ��a� � result�� specialist� and agenda�parallelism � and their relation to Linda
programming styles has led to a Linda programming environment� called the Linda
Program Builder ��Ahmed and Gelernter� ��a�� �Ahmed and Gelernter� ��b� �

Here� programming with Linda is supported by templates for the main program�
ming styles� by assisting functions and by macros for combined Linda�operators� It is
implemented as an enhanced version of the Epoch�editor ��Kaplan and Love et al� �
� �
The programmer selects a template suitable for his or her problem and �lls in � assisted
by the editor � the missing parts�

The editor cross�references the complete program text and thus is able to assist the
user� e�g� by looking up the use of Linda operations� Combinations of Linda operations
� e�g� or-in� which takes two templates and reads in a tuple matching to one of them �
are automatically generated by combining macros and the generation of supplementary
tuples�

We do not detail out these mechanisms� they involve mainly syntactic analysis and
rely on the accessibility of the complete program in source� Thus the Linda Program
Builder makes an assumption that cannot be up�held in open distributed systems and
is outside our focus�

The work on Linda at Yale University has included investigations in the possibility
of optimizations during compile�time by� among others� detecting static access patterns
and encoding constant tuples� Strategies are reported in �Bjornson and Carriero et al�
���� �Carriero and Gelernter� ��c�� and �Carriero and Gelernter� ����

Another project at Yale focusses on the use of idle time of workstations in a LAN
��Gelernter and Philbin� ���� �Mattson and Bjornson et al� �
� � The underlying model is
that a group of �piranhas� is working on a �cloud of tasks�� Each piranha tries to grab
a piece of work and to execute it� The model is realized by piranha�processes on the
workstations in a LAN� An eval�operation does not create a process directly but puts
it into the cloud of tasks� A feeder�process is responsible to initialize� coordinate and
�nalize their execution by some piranha�process on some workstation in the network�
When a workstation has something else to do � e�g� interaction with the user �� the
piranha issues a retreat�function� which causes the task to be abandoned and rescheduled
by the feeder to some other workstation� Thus a distributed version of Linda makes
e�cient use of idle time by otherwise unused workstations� Again� such an approach is
not applicable to open systems� as the assumption of a LAN in which processes can be
rescheduled cannot be upheld in the light of the potential world�wide scale connected
by a variety of networks and consisting of various machine�architectures�

Along the projects at Yale University was the design of a parallel Linda machine
��Ahuja and Carriero et al� ���� �Krishnaswamy and Ahuja et al� ��� � Here� a set of
processors equipped with local memory is attached a Linda�coprocessor that executes
the Linda�primitives in hardware using a separate tuple�store� The processors are laid
out in a two�dimensional grid� connected by a set of in� and out�busses� The coprocessor

http://www.robert-tolksdorf.de

g p

issues a broadcast on its out�bus for a tuple outed� so that all processors on this bus
are supplied with replicas of the tuple� An in�request is issued on the in�bus of the
processor� which is answered by those processors that �nd a matching tuple in their
tuple�stores� As an in�bus intersects all out�busses� it provides access to the union of all
local tuple�stores containing replicas� A protocol ensures that only one tuple is selected
for withdrawal and that no two processors withdraw the same tuple� The grid�structure
of the in� and out�busses allow for parallel placement and retrieval of tuples�

The claims of the Linda�designers that Linda includes concepts that are part of
other parallel programming styles but is more general� elegant and more easier than e�g�
Concurrent Objects and Actors� Concurrent Logic Programming or functional program�
ming have been laid out in �Carriero and Gelernter� ��b�� The advocates of the named
programming models gave replies in �Various authors� ��� which were again answered
by the programmatic discussion of coordination languages in �Gelernter and Carriero�
�
��

We summarize the confrontation of Linda and concurrent logic programming here�
as is shows some important programmatic claims� In �Various authors� ���� Ehud Shapiro
argues that Linda is Prolog without logic but including concurrency� In his view� the
tuple�space could be represented by a multiset of unit�clauses in the Prolog database of
facts� in and out could then be mapped to the assert and retract mechanisms� where
he views matching as a degenerated form of uni�cation�

Whereas Linda�s tuple�space operations are concurrent by de�nition with a blocking
in� sequential Prolog does not know about parallelism � which makes the retract failing
instead of blocking� He gives an executable speci�cation of the Linda operators by a
set of Flat Concurrent Prolog �FCP clauses that implement in� rd and out�

Shapiro concludes that Linda�functionality is enclosed in concurrent Prolog and can
be made available explicitly by some Prolog�clauses� He therefore argues that concur�
rent logic programming is a general and versatile programming model that has more
expressiveness while retaining e�ciency�

Carriero and Gelernter answer in �Carriero and Gelernter� ��b� and �Gelernter and
Carriero� �
� that Linda is more practical and more elegant for parallel computing than
Concurrent Logic Programming� They give examples to demonstrate that Linda�code
is easier to understand compared to Concurrent Logic programs� They claim that the
latter tends to force the programmer to produce complex solutions to simple problems
and suspect this to be caused by selecting a wrong abstraction level and making built�in
primitives for parallelism too predetermined for a certain programming style�

They see a di�erence between � e�g� � FCP and Linda in the fact that FCP is a
complete language whereas Linda just focusses on the separated aspect of coordination�
They argue that introducing several FCP�variants cannot strengthen con�dence in the
generality of these variants w�r�t� unanticipated problems�

Their concept of separating computation from coordination and embedding Linda
in a host language should make it easier for programmers to take the transition from
a sequential to a parallel language� So they would supply him or her with a Prolog�
embedding of Linda instead of introducing a new� parallel Prolog�variant�

Overviews on Linda applications at Yale University can be found in �Carriero and
Gelernter� ��� and �Hupfer and Kaminsky et al� ���� A vision of future information

http://www.robert-tolksdorf.de

g p

systems based on the Linda coordination model is laid out in �Gelernter� ��� which also
covers a set of application classes�

The latest developments at Yale University at the time of writing include the intro�
duction of the coordination language Bauhaus ��Carriero and Gelernter et al� ��� � It has
three main di�erences from Linda � First� tuples and tuple�spaces are uni�ed by the
structure multiset so that multiple tuple�spaces do not need the distinguished data�type
ts any longer� As a consequence� in and rd return multisets instead of tuples� Finally�
matching is guided by the notion of set�inclusion�

Given the multiset {a, a, {x, y}}� in{x} returns a multiset that includes all
elements of the set {x}� which is {x, y} in this case� The referenced paper gives
examples and discusses Bauhaus� semantics� However� at the time of writing� no further
comments can be made on the future direction of the development of Bauhaus�

Linda has inspired a number of research projects at other sites� A number of
embeddings in well�known programming languages have been reported� among these are	
�Borrmann and Herdieckerho�� ��� for Modula�
� �Kane� ���� �Schoinas� ��a�� �Schoinas�
��b� for C� �Leler� ���� �Ciancarini and Guerrini� ��� for embeddings at the operating
system level accessible in C� �Callsen and Cheng et al� ��� for C""� �Jellinghaus� ���
for Ei�el� �Pinakis� ��� for a Pascal�dialect� and �Sutcli�e and Pinakis� ���� �Sutcli�e and
Pinakis� ��� for Prolog�dialects�

Object�oriented embeddings are reported in �Polze� ���� �Polze� ��� for C"" and in
�Matsuoka and Kawai� ���� �Matsuoka� ��� for Smalltalk���� Put shortly� the matching�
relation is extended to obey inheritance structures� that is if the type of a tuple��eld
inherits from a type in a template��eld� then both match� This assumes that inheritance
induces subtyping between objects from super� and sub�classes�

Reports on embeddings in more research�oriented languages include �Hasselbring� ���
for SETL�E� ELLIS� an embedding in EuLisp ��Broadbery and Playford� ���� �Padget
and Broadbery et al� ��� � Lucinda� a combination with Russel ��Butcher� ���� �Butcher
and Zedan� ��b�� �Butcher and Zedan� ��a� and the parallel programming language
Ease ��Zenith� ��b�� �Zenith� ��a� �

At least two research projects deal with fault�tolerance in a Linda�like setting� �An�
derson and Shasha� ��� describes a Linda�system called PLinda which introduces prim�
itives for transactions� A process can be made transactional by the primitive xeval�
Finer grained transactional activity can be bracketed with xstart�xcommit or �xabort�
PLinda also investigates in combined operations like in-out(tuple) and extended
matching by allowing ranges of values as template��elds�

�Bakken and Schlichting� ���� �Bakken and Schlichting� ��� describe the fault�tolerant
FT�Linda� Here� agents have to follow a �xed protocol of in�process�out� The tuple�
space keeps a backup�copy of the tuple given to an agent� If it fails before completing
its work� this copy is given to another agent to process it�

Commercial versions have been reported to be marketed by Scienti�c Research Asso�
ciates� New Haven� CT ��Bjornson� ���� �Berndt� ���� �SRA� � LRW Systems� Stamfort�
CT for VAX running under VMS ��LRW���� �LRW��b�� �LRW��a� � Chorus Supercom�
puter Inc� ��Cho��� and Cogent ��Cog��a�� �Cog��b�� �Cog��� �

http://www.robert-tolksdorf.de

g p

The use of Linda�like concepts in the light of software�engineering and coordination
of software development has been studied in �Ciancarini� ��� and �Hasselbring� ��a��
�Hasselbring� ��c��

Linda�matching has been married with Actors ��Agha and Callsen� �
�� �Agha and
Callsen� ��� � The ActorSpace approach uses associative addressing and uncoupled
communication for actors� Here� a matching function is applied to realize a one�to�one�
out�of�many communication style� where the address of the actor to which a message is
directed is given as a template containing a regular expression� One actor whose address
matches the template is chosen non�deterministically for the message delivery�

In �Various authors� ���� Kenneth Kahn and Mark Miller give a historical footnote
which refers to the language ETHER whose operations are resembling Linda� ETHER
��Kornfeld� ��� is intended to construct problem solving systems which allow for con�
current activities� It does so by having a program being described by a set of rules�
called sprites� that consist of a pattern and a body� A sprite watches for an assertion to
be broadcasted that matches the given pattern� The body may generate new sprites or
broadcast assertions�

For a problem solver� the pattern describes a goal that can be evaluated by the
sprite� The assertions broadcasted correspond to subgoals to be proved by other sprites�
The resulting assertions are collected by giving patterns� A sprite �nally broadcasts an
assertion signaling that the goal could be proved� ETHER�s when construct corresponds
to Linda�s in� and the broadcast can be mapped to out� Moreover� ETHER knows so
called platforms that resemble local tuple�spaces� ETHER�s approach is also similar to
what we have laid out in �Mahr and Tolksdorf� ����

In this chapter we discussed the communication aspect of coordination by reviewing
the coordination Linda� We presented the tuple�space abstraction and the associated
operations and illustrated Linda by examples� After describing tuple�space predicates
and multiple tuple�spaces we discussed the characteristics of Linda�s approach to coor�
dination� In the next chapter we focus on the aspects of the synchronization of processes�
We do so by introducing a language called Alice� which � opposed to Linda � includes
its own execution model for processes�

http://www.robert-tolksdorf.de

Chapter �

Coordination focussing on process

synchronization� Alice

R
eferring to our model of coordination in chapter �� three aspects are of interest	
communication of data� synchronization of processes and the coordination of ser�

vices� In this chapter� we focus on the synchronization aspect� We do so by designing
the coordination language Alice which is similar to Linda� but puts more emphasis
on processes and their synchronization�

Whereas in Linda in� rd� out and eval are embedded into some computation
language� Alice takes the role of a host�language for a computation language� Thereby�
a model of execution is contained within Alice and is not borrowed from a computation
language� How processes are started and synchronized is the main focus of the design
of Alice�

Within the course of this chapter we will show how the coordination needs of state�
ments from a simple imperative programming language can be taken care of by Alice�
We will de�ne Alice�agents that coordinate loops or conditional constructs�

We thereby learn more about the separation of coordination and computation� In
the agent�world in chapter �� the spectrum of actions ranges from pure computational
actions to those we identi�ed as coordination actions� For a coordination language� this
spectrum is divided in two parts	 those actions covered by a sequential programming
language and those covered by a coordination language� Where this division is placed
is a design issue�

Linda chooses the point of separation at the coordination end of the spectrum of
actions� The design of Alice will show that it also can be chosen so that � for example

�

http://www.robert-tolksdorf.de

p

� actions concerning the control �ow in programs can be covered by a coordination
language� To the extreme � as we will see � Alice even can perform computations�

In Alice� data and processes are represented uniformly as tuples residing in a mul�
tiset of tuples called the agent�space� If a tuple has only one �eld and if this one contains
a process de�nition only� this process de�nition is executed as an agent� The operations
in a process de�nition are coordination operations using the agent�space or computation
formulated in some computation language�

The processes which Alice synchronizes are sequential processes without further
control structures� The level of detail on which Alice coordinates processes is that of
basic�blocks�

�Aho and Sethi et al� �
� de�ne a basic block as a sequence of consecutive operations
in which one �ow of control enters at the beginning and leaves at the end of the block�
There is no halt operation within a basic block nor any branch�operations� We consider
the execution of a basic as the atomic form of a sequential process� Coordination then
deals with actions that start and synchronize basic blocks�

We will show how the arising synchronization problem � e�g� how to start a process
that is the else�branch of an if�then�else construct � can be solved by synchronization
via the agent�space and its operations only�

Alice should be understood as an assembler for coordination� It works at a very
�ne grained level of coordination and does not rule out erroneous programs that run into
a deadlock or the like� However� its controlled usage allows for a very high �exibility�
Alice can be taken as an implementation language for other coordination languages
as we will show in appendix A� In this chapter we will show how Alice could be the
target�language for a compiler for a simple imperative programming language� In both
cases� the concurrent execution of processes and their synchronization is the basic notion
of an Alice�system�

��� Tuples and 	elds in Alice

The agent�space is populated by tuples� written h�eld��� � � ��eldni� They are sequences of
tuple��elds which are values� tuples or process�de�nitions� In this subsection we discuss
how tuples and �elds are constructed� An example of a tuple with a number �eld� a
tuple consisting of a boolean and a character and a boolean value is h���hT��a�i�Fi�

Values known in Alice are of the types boolean� character or number� Boolean
consists of the truth value � written T � and the false value � written F� Of type
character are alpha�numeric symbols such as �a�� � � �z�� Values of type number are real
number values� All types include a unique bottom value written �boolean� �character and
�number� In addition� there is a type Simple which contains the union of all values of
type boolean� character and number and includes a unique value �Simple�

�This name is taken � how should it be otherwise � from Lewis Carrolls books Alice�s Adventures
Underground and Through the looking glass� But to be honest� It is an anagram of the
name of the authors cat � Celia�

http://www.robert-tolksdorf.de

p

Alice�s type� and value�system is completed by the type Tuple containing all tuple�
values with a unique element �Tuple� and the type process containing all values of process
de�nitions as well as �Process� the unique bottom�element of type process�

All of these values can be used as �elds in tuples� Compared to Linda� the bottom
elements correspond to formals and there is a richer set of �eld�types� Besides of the
constructor hi� Alice has more operations on �elds and tuples� these are expansion�
templation and spreading�

� Expansion means expanding a tuple into its �elds and takes a tuple and results
in a list of �elds� It is therefore an inverse operation to tuple�construction� The
expression hjh�eld��� � � ��eldniji results in the �elds �eld��� � � ��eldn� Expansion al�
lows it to denote tuples in a number of ways� if the tuple�constructor is applied to
a list of �elds resulting from the expansion� For the examples s#h���
����i and
t#h�booleani� the following table shows some expansions	

Tuple s with one �eld appended hhjsji��characteri h���
������characteri
Tuple s with tuple t appended hhjsji�hjtjii h���
������booleani

Compared to Linda� expansion takes the role of decomposing a tuple into its
�elds but without an explicit notion of a binding rule to an environment such as
program variables�

Expansion has two variants� head�expansion � written hjtuplehj � and tail�expansion
� written jitupleji � which result in the �rst �eld of a tuple or the �elds of a tuple
but the �rst� resp� Again� these operations allow for �exible ways of constructing
tuples	

First �eld of s between two copies of t hhjtji�hjshj�hjtjii h�boolean�����booleani
First and last �elds of s surrounding t hhjshj�hjtji�jisjii h����boolean�
����i

� Templation is another constructor for tuples	 For a �eld and a tuple it results in a
tuple containing as many �elds as the given tuple which have the value as given by
the �eld� It is written ��eldjtuple� and examples are given in the following table	

A tuple that has as many �elds as
tuple s� each containing an empty
tuple

�hijs� hhi�hi�hii

A tuple containing two copies of t �hjtjijh�Tuple��Tuplei� h�boolean��booleani

Templation is a dynamic tuple�constructor� as the number of �elds contained in
the tuple is determined at execution time�

http://www.robert-tolksdorf.de

g

� Finally� a set of tuples can be denoted by spreading the �elds of a tuple� The
resulting tuples each contain one �eld of the tuple� For the example s above� �jsj
denotes the set of tuples h��i� h
�i and h��i�

Spreading is used mainly to spread the �elds of a tuple into a pattern of tuple��elds�
When writing �j��sj � the set of tuples h����i� h��
�i and h����i results� The tuple
spread � s in the example � may appear only in one location of the pattern� When
multiple tuples are mentioned in a spreading� ambiguities have to be resolved by
explicitly stating which tuple is to be spread� Thus the expression �jt�sj fsg results in
the set of tuples hh�booleani���i� hh�booleani�
�i and hh�booleani���i� whereas �jt�sj ftg
gives hh���
����i��booleani� Note that in order to denote h���
������booleani� one
would have to write �jhjsji�tj ftg �which is equivalent to hhjsji�hjtjii �

To summarize the operations on tuples and �elds	 The hi�constructor results in a tuple
whose length and �elds are known in advance� Templation with ��eldjtuple� constructs
a tuple whose �elds are known and whose number of occurrences depends on the tuple
given� Spreading results in a set of tuples whose number and contents depends on the
tuple given as argument� The projections hjtupleji� hjtuplehj and jitupleji result in the �elds
of a tuple� in the �rst �eld or in all but the �rst �eld of a tuple�

We claim that the operations de�ned are simple and well implementable� A closer
examination shows that they are similar to Linda�s handling of �elds and tuples� Here�
individual �elds are accessed by binding their value to some program variable� Also�
the tuple constructors� such as spreading and templation� involve only slightly more
complexity as the usual tuple�construction with hi�

So far� we dealt with tuples whose �elds were of simple types� We now introduce
how process de�nitions are handled in Alice as �elds and tuples�

��� Agents in Alice

As stated� tuple �elds in Alice can contain a process de�nition� When a tuple contains
a process de�nition as its only �eld� its operations are executed sequentially in which
case we speak of an agent�

Processes are composed of operations that emit or withdraw tuples from the agent�
space or perform local computation� out�tuple emits a tuple to the agent�space from
which it can be withdraw by agents� in�tuple searches the agent�space for a tuple that
matches the tuple given as the argument� If it does not �nd one� the operation blocks
until another agent out�s a matching tuple� local denotes computations expressed in
some computation language that is embedded into Alice� They are only required to
conform to the execution model of Alice� that is that local is started immediately and
that it has a de�ned end at which the next operation in the process de�nition can be
started� Thus local may well involve concurrent computations� however� it must not
start some thread of control that continues to run when the next operation from the
process de�nition is started�

Two tuples are said to be matching if they have the same length� if the types of the
tuple��elds are pairwise the same and the values of the �elds match� Matching of values

http://www.robert-tolksdorf.de

g

is de�ned as equality for ordinary values� whereas the bottom element of a type matches
any value of the type� including the bottom element itself� Figure ��� formalizes the
matching relation� where �elds are written as pairs a � � with a being a value of type
� � The type of �� is � �

match�a � �� a � � # TRUE
match�a � ���� # TRUE
match��� � a � � # TRUE

match�a � Tuple� b � Tuple if
Vn
i�� 	 match�ai� bi

match�a � Process� b � Process � a � b

Figure ���	 The matching relation

Identical �elds of the same type match in any case as well as the bottom element
of a type matches any value of that type� For two values of type tuple� their length
has to be identical with pairwise matching �elds� For process de�nitions as described�
we introduce an abstract matching based on some equivalence relation �� This relation
could be syntactic equivalence or some decidable semantical equivalence� In the following
we will use only the matching between �Process and process de�nitions�

Alice�s matching relation di�ers from the one de�ned for Linda in that the bottom
elements are treated as values and that bottom elements of the same type match� In
Linda� formals can appear in templates only and are not included in the matching rela�
tion� Alice�s de�nition has a speci�c consequence	 When performing an in�h�numberi �
for example� the tuple retrieved can contain a number value or the bottom element�

In most Linda�like languages this is considered impractical as it is unclear how the
bottom element should be interpreted by a computational language� This argument�
however� does not hold if the retrieved tuple is not interpreted by a computational
language but just used for further coordination�operations� Also� it does not hold if one
knows if the agent�space from which the tuple is retrieved contains such elements� In
subsection ��
�� we will introduce means for an agent to establish a local agent�space
which is �lled with tuples exclusively by this agent and for which this de�nition of the
matching�relation proves to be useful�

Agents inAlice consist of a process and a set of data� being a set of �elds �remember
that tuples are treated as �elds � called the local environment� Processes reference this
data by names� resulting in a binding of a �eld to a name and the access to a �eld by a
name� The naming scheme is purely local to the agent and names cannot be referenced
from another agent�

An example of an agent is hin�a	�Tuple �out�a �out�a i� which retrieves a tuple from
the agent�space and binds it to the name a in its local environment� It references it
by the out�operations twice� Let a tuple consisting of a number��eld and a process�
de�nition exist in the agent�space as h���in�a	�Tuple �out�a �out�a i� Then� some agent
can retrieve it by executing in�a	h�number��Processi � after which hjahj references the �eld
�� and jiaji references the �eld in�a	�Tuple �out�a �out�a � However� the two references
to a in the agent executed and the process�de�nition retrieved are completely unrelated�

http://www.robert-tolksdorf.de

g

As stated above� the creation of an agent is performed by some agent by out�ing
a tuple with a single �eld containing a process de�nition� Executing out�hin�a	�Tuple �
out�a �out�a i results in a new agent that tries to retrieve a tuple from the agent�space
and emits it twice�

When this agent is executed� it consists of a set of data � the local environment ��
a process that has been executed already and a process that will be executed� We use
the notation hhfdatag�executed�to executeii for looking at an agent in this structure� If
p is a process de�nition� then the corresponding agent can be written hhfg��pii when its
execution starts� For the example above� the execution of the agent looks as follows	

After the initialization hhfag��in�a	�Tuple �out�a �out�a ii
After retrieving a tuple h��i hhfa	h��ig�in�a	�Tuple �out�a �out�a ii
After emitting a twice hhfa	h��ig�in�a	�Tuple �out�a �out�a �ii

The local environment is a mapping from identi�ers to values� It is modi�ed by in
as in the example and by any local computation� It is accessed by out and any lo�
cal computation� An embedding of a computation language into Alice provides the
local�operations and has to implement some mechanisms that makes access to the local
environment possible�

When writing an Alice�program� one de�nes agents by giving them a name� listing
the identi�ers used in the local environment and by a process de�nition to be executed�
An example is	

in�twiceout	 hhfag��in�a	�Tuple �out�a �out�a ii

Note that the name is used only in the program text and does not exist at runtime�
Given such a de�nition� another agent can use it as follows	

out�twice�user	 hhfg��out�h��i �out�in�twiceout ii

There is also a notation that initializes the local environment when performing an out
with an agent� Let twice�out be an agent de�ned as

twice�out	 hhfag��out�a �out�a ii

Then another agent can create twice�out as an agent and initialize its local environment
with the tuple h��i if it is de�ned as

twice�user	 hhfg��out�htwice�outifh��ig ii

In this notation� a list of �elds is given in the initialization list which is bound as values
to the identi�ers used in the local environment in the order they are de�ned�� The
execution of twice�user results in the agent hhfa	h��ig��out�a �out�a ii�

Spreading as de�ned above takes a tuple and a �eld�pattern and spreads the �elds
of the tuple resulting in a set of tuples� It also can be applied to agent�tuples so that
a set of agents is generated� Again� all references in the pattern are replaced with a
tuple containing one �eld from the spread tuple� If there is no reference to tuples in the
process� no replacement takes place in the replicated agents and a set of identical agents
is denoted� Given that s#h���
����i� �jtwice�outj fsg denotes the following set of agents	

�There is no possibility of reference from outside to the names used in an agents�

http://www.robert-tolksdorf.de

g

hhfa	h��ig��out�a �out�a ii
hhfa	h
�ig��out�a �out�a ii
hhfa	h��ig��out�a �out�a ii

As for Alice�s operations on �elds and tuples� we claim that the operations such as
initialization and spreading of agents are well implementable� Given that the local
environment can be represented as an array of �elds� initialization means simple copy�
operations amongst �elds� The same argument applies to the spreading of tuples over
agents� Access to the local environment can easily be compiled into accesses to the array
of �elds� The concept of dividing the process de�nition in a part that has been executed
and a part that will be executed corresponds to an implementation using some program
counter�

To summarize	 Process�de�nitions are composed of in� out and local� where in re�
trieves a matching tuple from the agent�space� out emits one and local are operations
from a computation language� A tuple consisting of a process �eld only is executed as
an agent�

Agents consist of a local environment� a process that has been executed and a process
that will be executed� The local environment can be initialized during an out with tuples�
Spreading can be applied to agents as well and results in a set of agents whose local
environment is initialized with �elds from a tuple�

����� Local agent�spaces

The out� and in�operations emit and withdraw tuples to and from the agent�space in
which the agent works� Alice introduces the notion of local agent�spaces which can be
set up locally by an agent and are initialized with tuples and agents� The agents therein
are executed and manipulate the local agent�space� Executions in the local agent�space
end when all agents either have terminated or block at an in�operation� This �nal state
is taken as the result of a local agent�space as a value of type boolean� The programmer
has to assure that these �nal states are reached��

Local agent�spaces are de�ned in Alice as a variant of the in�operation� The value
retrieved is the result of the local agent�space as a tuple containing a boolean��eld� It
is notated as in�name	ftuple��� � � �tuplen�agent�tuple��� � � �agent�tuplemg �

As an example� a local agent�space can be used to test if two tuples match without
accessing the global agent�space and without blocking	

h� � � in�c	fa�hin�b ig � � � i

Here� a local agent�space is initialized with the tuple a and the agent�tuple in�b � Ex�
ecution of that agent is started and this execution can result in a termination of all
agents when a matches b� or in a blocking of all agents in the case that a does not
match b� This result of the local agent�space then is bound to the name c in the local
environment as tuple hFi or hTi�

Spreading is useful to initialize a local agent�space with sets of tuples and agents�
To test if tuple a contains at least the �elds from tuple b� a process can execute

�Recall that Alice is a �coordination assembler��

http://www.robert-tolksdorf.de

g

h� � � in�c	f�jaj ��jin�hbi j g � � � i

Here� the tuple a contains at least the �elds of b if the local agent�space terminates� For
tuples a#h���
����i and b#h�����i the spreading initializes the agent�space with h��i�
h
�i� h��i and the agents hin�h��i i and hin�h��i i� A similar test can be performed by
combining templation and a local agent�space by performing

h� � � in�c	fa� hin���numberja� ig � � � i

This tests if all �elds of a are of type number� For a#h���
����i the local agent�space
is initialized with the tuple h���
����i and the agent in�h�number��number�numberi � The
result of the agent�space here is T and would be F for a#h����A����i�

If we wanted to know if a has at least as many boolean �elds as b has �elds� spreading
without a reference can be applied	

h� � � in�c	f�jaj ��jin�h�booleani j fbgg � � � i

For a#h���T����Fi and b#h�A����i� the agent�space is initialized with h��i� hTi� h��i�
hFi� hin�h�booleani i and hin�h�booleani i� in which case the test succeeds�

To formalize the constructs discussed in the preceding sections� �gure ��
 shows the
grammar over which process de�nitions and tuples are generated in Alice�

Process 		# Operation � Process j Operation

Operation 		# out� Tuple � j out� Identi�er � j out� Spreading � j
in� Tuple � j in� Identi�er � Tuple � j in� Identi�er � f Tuplesg � j
local

Tuples 		# Tuple j Tuple � Tuples j Spreading

Spreading 		# �jFieldsj j �jFieldsj fTupleg

Tuple 		# Identi�er j h Fields i j �FieldjTuple� hh f Tuples g� Process � Process ii

Fields 		# Field � Fields j Field j hjTupleji j jiTupleji

Field 		# Identi�er j �Tuple j Tuple j hjTuplehj j
�Simple j Number j �number j Character j �character j Boolean j �boolean

j
�Process j Process j Process f Tuples g

Figure ��
	 Grammar for Alice

http://www.robert-tolksdorf.de

y

��� Process synchronization with Alice

In the introduction to this chapter� we discussed coordination of processes at a very
�ne grained level� Processes in Alice are sequentially executed from the �rst opera�
tion to the last without any forms of control �ow constructs� Alice�processes can be
understood as basic blocks following the de�nition in �Aho and Sethi et al� �
��

A basic block is a minimal unit in the execution of programs� The synchronization
aspect of coordination is concerned with actions for the start� blocking� unblocking and
ending of processes as de�ned in our model in chapter �� Thus� any form of control
constructs such as loops etc� requires coordination�

In a sequential environment this synchronization aspect is not prominently visible
and is implemented by branches in the program code� However� when changing to a
parallel or distributed environment� it becomes well noticeable that a real coordination
problem has to be solved�

How a solution to coordinate the synchronization of basic blocks can guide the design
of a multi�computer has been demonstrated in �Dai� ���� �Dai and Giloi� ��a�� �Dai and
Giloi� ��b�� Here� a machine architecture involving two separate levels of execution has
been proposed that uses RISC processors for the sequential execution of basic blocks�
and a graph�level in which coordination of basic blocks is performed based on data�ow�
graphs�

In this section we demonstrate how Alice can be used to formulate agents that
perform coordination as known from imperative programming constructs� As Alice�
agents work in parallel the result is a system in which basic�blocks are executed in
parallel�

In a simple imperative programming languages� such as the one de�ned in �Hennessy�
���� one �nds boolean and numerical expressions� assignment� sequencing� if�then�else�
clauses and while�do�loops� In Alice� expressions are abstracted from by local� Se�
quencing is expressed with ���� Assignment is performed by local or by in�identi�er	� � � �
In the next subsections� we deal with if�then�else and while�do�

In the introduction� we classi�ed Alice as �assembler�like�� The examples shown
here therefore should be understood as patterns that a compiler emits for coordination
actions�

����� Coordinating conditional execution

In an if�then�else clause� we can identify two processes for which coordination is required	
One branch of the clause has to be started as a process according to the condition�
In Alice� such a construct can be represented as a tuple of the form hcondition�if�
process�else�processi�

Starting one process according to the condition is performed by the following two
agents	

bool�cond�t	
hin�hT�a	�Process��Processi �out�hai �out�hbool�cond�ti i

bool�cond�f	
hin�hF��Process�a	�Processi �out�hai �out�hbool�cond�fi i

http://www.robert-tolksdorf.de

y

The two agents initialize the �rst process as an agent if the condition��eld matches
the boolean value T� the second otherwise� An if�then�else construct in Alice then
can be executed by an agent by computing the condition with local operations and by
performing an out of a tuple of the above form�

����� Coordinating loops

For the control construct while�do at least three processes of interest can be identi�ed	
the computation of the condition for the loop� the loop body and the process to be
executed after the termination of the loop�

Let the while�do operate on a local environment given as a set of �elds t��� � � �tn�
Let the local computation evaluating the loop condition into a boolean �eld c be called
b�� the one of the loop�body b� and the process after the loop b�� We can formulate
Alice�agents that perform the coordination of this loop�

First� an extended version of the if�then�else construct is de�ned that passes a local
environment to the processes coordinated	

env�cond�t	
hin�hT�a	�Process��Process�e	�Tuplei �out�haifhjejig �out�henv�cond�ti i

env�cond�f	
hin�hF��Process�a	�Process�e	�Tuplei �out�haifhjejig �out�henv�cond�fi i

Here� the selected process it turned into an agent initialized with a local environment
as found in the if�then�else�tuple� We use the env�cond agents for the coordination of
the loop in which two agents are involved� The agent looper coordinates the start of the
loop�body or the process after the loop depending on a condition	

looper	 hhft��� � � �tn�cg��b��out�hhjcji�body�continue�ht��� � � �tnii ii

b� is some local computation that evaluates a condition and stores it in the �eld c as a
boolean� Then� a tuple for the env�cond�agents is emitted containing the loop�body to
be executed when the condition was true� containing the process after the loop�
The loop�body is executed by the following agent	

body	 hhft��� � � �tng��b��out�hlooperift������tng ii

b� is the local computation contained in the loop�body� The following out coordinates
the next iteration of the loop by emitting the looper agent� Finally� the process to be
executed after the loop is formulated as	

continue	 hhft��� � � �tng��b�� � � ii

The scheme outlined by these agents performs coordination for a sequential loop where
the loop�body is assumed to modify the environment so that the evaluation of the loop�
condition or the next iteration depends on it� Loops can be suited for parallel execution
of their bodies if these data�dependencies do not exist� For Alice such loops make
sense as their bodies can contain out�operations that have e�ects on other agents� In
this case the following par�looper agent can be de�ned	

http://www.robert-tolksdorf.de

y

par�looper	 hhft��� � � �tn�cg��b��
out�hc�par�looper�continue�ht��� � � �tnii �
out�hc�b���ht��� � � �tnii ii

Here� the next evaluation of the loop condition is generated as an agent as well as an
agent executing the loop�body� If the loop is to terminate� the continue agent is emitted
and no new loop body executes� Note that the local environment of par�looper is used
to initialize b� so that there may be no data�dependencies between continue and the
loop�body�

����� Synchronization of groups of agents

If all body�agents have to terminate prior to the execution of continue� an additional
synchronization need arises� It can be formulated as an Alice�agent by extending the
loop�agents�

The idea is that such a loop gets a unique label l and introduces a signal�tuple s� The
agent synch�looper �counts� the number of body�agents generated in a tuple of the form
hl�si� where s has the form hhi�� � � �hii and the number of empty tuples in s corresponds
to the number of bodies emitted� There is one tuple of the form hl�hii emitted at the end
of the body�generations� Each body retrieves it after the execution of its computations
and appends an empty tuple� The continuation then is synchronized by the existence
of a tuple hl�hhi�� � � �hiii which exists only when all body�agents have terminated�

synch�looper as shown below computes the loop�condition with b�� If it yields true�
another synch�looper will be generated with the signal�tuple enlarged by an empty�tuple�
Also� one body�agent will be emitted by the env�cond�agents� If the loop is to end� the
emit�signal agent will be generated with the number of generated bodies encoded in the
signal�tuple�

synch�looper	
hhft��� � � �tn�l�s�cg��b��

out�hhjcji�synch�looper��ht��� � � �tn�l�hhjsji�hiiii �
out�hhjcji�synch�body��ht��� � � �tn�lii �
out�hhjcji��emit�signal�ht��� � � �tn�l�sii �
ii

The emit�signal agent � which is executed after all body�agents have been generated
� �rst out�s a tuple hl�hii as the initial signal�tuple� Also� it starts the synch�continue
agent initialized with the �nal signal�tuple	

emit�signal	 hhft��� � � �tn�l�sg��out�hl�hii �out�hsynch�continueift������tn�hl�sig ii

A body�agent �rst performs its computation with b� and then retrieves the signal�tuple
with the label l� The second part of this tuple containing the number of terminated
body�agents encoded as empty tuples then is passed to the re�emit�signal agent� which
appends another empty tuple and emits it to the agent�space�

http://www.robert-tolksdorf.de

g

synch�body	 hhft��� � � �tn�l�mg��b��
in�hm	hl��Tupleii �
out�hre�emit�signalifl�jimjig ii

re�emit�signal	 hhfl�sg��out�hl�hhjsji�hiii ii

synch�continue �nally� waits for the signal�tuple in its �nal state as it has been initialized
by the emit�signal agent� It is present in the agent�space exactly when all body�agents
have terminated and the last re�emit�signal has out�ed it�

synch�continue	 hhft��� � � �tn�sg��in�s �b�� � � ii

With these examples we have shown how Alice�agents perform coordination for the
synchronization of processes involved in constructs known from imperative program�
ming� They should be understood as the output of some compiler that uses Alice as
the target assembler language�

The last examples involved the encoding of a counter in a tuple by �lling it with
empty tuples� We notice that even computation can be performed in Alice� and will
demonstrate this in the next section by de�ning an interpreter for Turing�machines with
Alice�agents�

��� Turing machines with Alice

Let a Turing�machine be described by a set of states Q� a set of tape symbols $� a
set of input�symbols %� the blank B� the transition function �� mapping Q � $ into
Q� $� fL�Rg� the initial state q� and a set of terminal states F �

Then we can specify Alice�agents that interpret this Turing machine with respect
to an input ��� We code the tape and the current state in a tuple of four �elds� The
�rst contains the current state encoded as hqi� The second represents the tape to the
left from the head in reversed order with a tuple for each �eld� The third contains the
symbol under the head in a tuple and the last represents the tape right from the head�

If we have a Turing machine in state q and a tape a�a� � � � ai��amai�� � � � anB � � � our
agent would code it as the tuple

hhqi� hai��� a�� a�i� haii� hai��� � � � � anii

With this representation� two agents L and R can be formulated that perform the
movement of the machine�s head to the left and to the right	

R	 hhfq�l�x�rg��out�hq�hx�hjljii�hhjrhji�hjirji�� �ii ii
L	 hhfq�l�x�rg��out�hq�hjiljii�hhjlhji�hx�hjrjiii ii

R performs a movement to the right� thus putting the symbol under the head in the
tuple representing the tape to the left� and putting the �rst symbol from the tape to
the right under the head� L does the opposite moving the symbol under the head to the
right and putting the symbol to the left under the head�

http://www.robert-tolksdorf.de

g

Let a transition from � be coded as a tuple with �ve �elds	 hq�x�p�y�ai� Here� q is
the state of the Turing machine� x is the current symbol on the tape� p is the state after
the transition with the current symbol replaced by y� a is an agent that performs the
movement of the head� for which we can use agents L and R�

This representation then is used by a set of ��agents that are initialized with these
�elds� A ��agent is de�ned as

��agent	 hhfq�x�p�y�a�l�rg��in�hq�l	�Tuple�x�r	�Tuplei �
out�haifp�l�y�rg �
out�h��agenti ii

According to the transition� it does an in for a tape represented by a tuple which contains
the matching state q and symbol x under the head� Then� the transition is taken by
replacing the state with the new one p and by overwriting the symbol under the head
with y� The new tape�representation is the initialization for the movement agent a�
Finally� the ��agent re�emits itself to the agent�space�

Given� we have a transition in state q� and input symbol �� a ��agent for the transition
into state q� with the symbol replaced by � and a movement to the left� will perform
in�h�0��l	�Tuple��1��r	�Tuplei to get a matching tape and then out�hLif����l�����rg � We will
encode states as characters representing the number of the state� so that state q� is
represented by �4��

A Turing�machine interpreter in Alice is to be initialized with an initial state q��
the terminal state f� the input as a tuple a and the ��function as a tuple consisting of
transition�tuples in the form suited for ��agents�

turing	 hhfq��f�d�ag��out�hhq�i�hi�hhjahji�hjiajiii �
out��jh��agentifhjdjigj �
out��jhin�hf��Tuple��Tuple��Tuplei ij ii

turing �rst emits the initial tape tuple with the initial state� no input to the left of the
head� the �rst �eld from the input�tuple under the head and the tail as the remaining
input on the right of the head� Then a set of ��agents is generated by spreading the
transition�tuples contained in d� Finally� an agent is emitted that absorbs the tape tuple
if it represents the Turing machine in a terminal state�

As an example we take a Turing machine that recognizes the language L # f�n�njn �
�g as de�ned in �Hopcroft and Ullman� ���� It is given by states Q # fq�� q�� q�� q�� q�g�
tape�symbols % # f�� �g� input�symbols $ # f�� �� X� Y� Bg� the initial state q� and the
�nal state f # q�� The transition�function � is given in �gure ����
� is encoded in the following tuple	

d#
hh�0���0���0���X�� Ri� h�0���Y���3���Y�� Ri�
h�1���0���1���0�� Ri� h�1���1���2���Y�� Li� h�1���Y���1���Y�� Ri�
h�2���0���2���0�� Li� h�2���X���0���X�� Ri� h�2���Y���2���Y�� Li�
h�3���Y���3���Y�� Ri� h�3���B���4���B�� Rii

The interpretation of this machine is started by the agent hturingif��������d�h��������������ig on
the input ����� The tape�tuple has the following outforms during its interpretation	

http://www.robert-tolksdorf.de

g p

Input
State � � X Y B

q� �q�� X�R & & �q�� Y� R &
q� �q�� �� R �q�� Y� L & �q�� Y� R &
q� �q�� �� L & �q�� X�R �q�� Y� L &
q� & & & �q�� Y� R �q�� B� R
q� & & & & &

Figure ���	 � of a Turing�machine that recognizes �n�n

h�0��hi��0��h�0���1���1��� �ii
h�1��h�X�i��0��h�1���1��� �ii
h�1��h�X���0�i��1��h�1��� �ii
h�2��h�X�i��0��h�Y���1��� �ii
h�2��hi��X��h�0���Y���1��� �ii
h�0��h�X�i��0��h�Y���1��� �ii
h�1��h�X���X�i��Y��h�1��� �ii
h�1��h�X���X���Y�i��1��h� �ii
h�1��h�X���X���Y�i��1��h� �ii
h�2��h�X���X�i��Y��h�Y��� �ii
h�2��h�X�i�h�X�i�h�Y���Y��� �ii
h�0��h�X���X�i��Y��h�Y��� �ii
h�3��h�X���X���Y�i��Y��h� �ii
h�3��h�X���X���Y���Y�i�� ��h� �ii
h�4��h�X���X���Y���Y��� �i��i

The �nal tuple is absorbed by the agent that is emitted by turing depending on the �nal
state�

We have shown that it is possible to write a set of agents in Alice that interpret a
Turing machine� Thereby we have proven that Alice has the ability to compute every
recursive enumerable function�

The interesting point is that our focus in the design of Alice was coordination� It
turns out that the model is applicable to computation also� We take this as a prove
for the claim in �Gelernter and Carriero� �
� that coordination and computation are
orthogonal concepts�

However� we like to point out that a coordination language is di�erent from a com�
putational language as the objectives of its usage are di�erent� The examples in which
Alice has been used so far have led to very short solutions in terms of the complexity
of agents when coordination issues were concerned�

��� Historical and bibliographic remarks

The name Alice has been used for a parallel reduction machine in the early ���s�
Despite the pure coincidence of the names� a look at the ALICE�machine shows a

http://www.robert-tolksdorf.de

g p

connection between reduction�oriented and Linda�like generative computation� The
ALICE�machine is described in detail in �Darlington and Reeve� ���� our description is
based on the introduction found in �Moor� �
��

In the ALICE�machine� the basic unit of work is called a packet� A program is repre�
sented as a number of packets that are held in a packet�pool� Processors try to retrieve
and evaluate packets from the pool that have been marked as processable� The evalua�
tion comprises of the execution of code and the rewrite of a packet which is re�delivered
to the pool� If a packet cannot be evaluated due to the lack of arguments� it is put into
the pool� appropriately marked and rewritten with pointers to the argument packets
awaited� A successful evaluation can make packets that await arguments executable
which subsequently leads to their evaluation by some processor�

The concept of concurrent agents coordinated by using a shared multiset of elements
also can be found in the language GAMMA� an acronym for General Abstract Model
forMultiset Manipulation ��Ban'atre and Le M(etayer� ���� �Ban'atre and Le M(etayer� ����
�Mussat� ��� � It is motivated by the distinction between logical and physical parallelism�
GAMMA is designed as a high�level language in which algorithms are described without
introducing arti�cial sequentiality�

The abstraction introduced in GAMMA is that of a chemical reaction� A multiset
is thought of as a chemical solution � its elements are molecules� A GAMMA program
de�nes a reaction condition for which molecules for a reaction have to be found and
selected and an action describing the result of the reaction � a new molecule� The
stable state of the solution � i�e� when no reaction condition applies to the solution � is
identi�ed with the termination of the program�

More formally� a GAMMA program de�nes reaction conditions and actions �R�A
that� when applied to a multiset replace a subset of elements fx��� � � �xng by the elements
of A�x��� � � �xn if R�x��� � � �xn is true� The execution of a GAMMA program means the
application of the $ operator� which controls the evaluation of a set of reaction conditions
and actions on a multiset� The $�operator provides the abstraction	 If several reaction
conditions hold on a multiset� one is chosen non�deterministic�

Figure ��� shows some examples taken from �Ban'atre and Le M(etayer� ����� Factorial
�����a computes n)� The reaction rule R always applies on two elements of a multiset�
If such two elements are available� the action A de�nes a reaction of these two element to
their product� Both are applied with the $�operator to a multiset in which all numbers
from � to n are present� The computation terminates if there is only one element left�
in which case the element is n)�

Sort �����b shows an algorithm for sorting� Here� the elements of the multiset�
on which R and A are applied� contain an array represented by pairs �index�value � R
states that if two elements of the multiset satisfy the condition that the index of the �rst
is higher than that of the second and its value is lower than the second� the reaction A
can be applied� which swaps the values�

Finally� Philosophers �����c gives a solution to the dining philosophers problem�
The multiset on which the reactions are applied contains representations of the philoso�
phers �Pi and four forks �Fi � The �rst reaction rule R� states that two adjacent forks

��Mussat	 ��� gives more examples and shows how to derive GAMMA�programs from mathematical
speci�cations�

http://www.robert-tolksdorf.de

g p

fact�n # $��R�A �f��� � � �ng
where

R�x�y # true
A�x�y # fx*yg

�a� Factorial

sort�Array # $��R�A �Array
where

R��i�v ��j�w # �i�j and �v�w
A��i�v ��j�w # f�i�w ��j�v g

�b� Sorting

philosophers # $��R��A� �R��A� �fF��F��F��F��F�g
where

R� �Fi�Fi�l # true
A� �Fi�Fi�l # fPig
R� �Pi # true
R� �Pi # fFi�Fi�lg

�c� Dining philosophers

Figure ���	 Examples in GAMMA

are consumed by an eating philosopher� which is expressed in the action A�� � denotes
the modulo operation in GAMMA� R� represents the possibility of the release of the
forks for a philosopher by A�� As can be seen� GAMMA de�nes expressions on multisets
and elements for reaction conditions and actions� Here� we refer to the literature for
details� In contrast to the Linda�solution of the problem in
���a � GAMMA ensures
fairness in selecting reactions� thus the program is livelock�free�

We can compare GAMMA to Alice� Where $ is considered the control�abstraction�
Alice abstracts from any order on the unblocking of agents by making the in�choices
non�deterministic� Moreover� $ also abstracts from order in which the reaction takes
place after retrieving a set of molecules� opposed to Alice�s model of sequential pro�
cesses� The reaction condition di�ers from the in�mechanism in that it tries to �nd a
set of molecules that ful�ll constraints in contrast to the retrieval of a single tuple that
is related to a template by the matching rule based on identity of values�

The chemical metaphor of GAMMA has motivated the development of the Chemical
Abstract Machine CHAM� which introduces a notion of subsolutions in which reactions
take place without interfering with other subsolutions� �Berry and Boudol� ��� gives a
formal de�nition of the CHAM�operations and gives CHAM�speci�cation of CCS and a
concurrent +�calculus� called 	�calculus� The paper emphasizes that the CHAM �and

http://www.robert-tolksdorf.de

g p

GAMMA handles true concurrency as the basic primitive notion in contrast to the
named calculi�

Another metaphor is introduced by Interaction Abstract Machines ��Andreoli and
Ciancarini et al� �
a� � IAM� which try to characterize computations in open systems �
as opposed to the focus on parallel computations as with the CHAM�

Here� an agent possesses a state consisting of a multiset of resources� It can evolve
when some set of resources is available by replacing it with other resources� as de�ned in
methods of the form A�

�
	 	 	

�
An
�B�

�
	 	 	

�
Bm� where the A�resources are replaced by

the B�resources� When several non�intersecting subsets of resources are available which
are required by multiple methods� they can be replaced concurrently�

The termination of an agent is modeled by rules that contain no resources in the
replacement� written A�

�
	 	 	

�
An
��� The creation of agents is captured by a notion

of cloning� Given a method p
�
a
��q

�
r �s� then on the availability of p and a� two

replacement�activities are generated	 One in which p and a are replaced by q and r�
and one in which they are replaced by s� Thus� there is an intra�agent concurrency by
multiple parallel applied methods and inter�agent concurrency by multiple independent
replacements in cloned agents�

Communication amongst agents is modeled as the addition of resources to the states
of agents� This is done by marking some required resources with the broadcast�pre�x
�� When such a rule A�

�
	 	 	

�
An

��C
�B�

�
	 	 	

�
Bm is executed� then C is assumed

to be in the state of the agent and� moreover� is added to the states of all other agents�
Broadcasts can be used to model multicasts� if the resources broadcasted are marked by
some unique identi�er which is required in the methods of a subset of agents only� Then�
the resource still is broadcasted but never consumed in some agents� Logically� the agents
that know about this identi�er are the only receivers of the multicast� IAMs provide a
model for computations in the language Linear Objects ��Andreoli and Ciancarini et al�
�
b�� �Andreoli and Pareschi� ��� �

In this chapter we discussed the process synchronization aspect of coordination� We
designed the coordination language Alice which has its own model of execution of
processes� We showed� how constructs from a simple imperative language can be im�
plemented with Alice� Finally� we showed that Alice can interpret Turing�machines�
which documents the orthogonality of computation and coordination�

In the next chapter we present the main contribution of this thesis � the coordination
of services in open distributed system with the coordination language Laura�

In the case of Alice we are dealing with a very curious�
complicated kind of nonsense� �� � � 	 and we need to know a
great many things that are not part of the text if we wish to

capture its full wit and
avor�

Martin Gardner�s introduction to �Carroll� ���� p� 	

http://www.robert-tolksdorf.de

Chapter �

Coordination of services in open

distributed systems� Laura

I
n the preceding two chapters we reviewed Linda as a coordination language focussing
on the exchange of data in parallel systems and introduced the language Alice which

pays special attention to the coordination of processes� In this chapter� we present
informally the main contribution of this thesis� the coordination language Laura which
is designed for the coordination of services in open distributed systems�

This chapter is organized as follows	 First� we give a design rationale by analyzing
the characteristics of the coordination problem in open distributed systems and shortly
outline Laura�s solution� We then describe how services are identi�ed in Laura by
descriptions of service�interfaces in section ��
� The use of names in interfaces in the
light of open distributed systems is discussed in section ���� Finally� we give a description
of Laura�s operations in section ���� While this chapter gives an informal description�
� will prescribe Laura formally by a type system and behavioral semantics�

��� Design motivation

Open distributed systems provide an infrastructure in which participants use and o�er
services from and to other participants� They do so at a very large scale � potentially
world�wide � and with very few restrictions� The intention is to glue together resources
that are already available for some participants but not accessible for all�

��

http://www.robert-tolksdorf.de

g

���
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

An application

distributed to

� �
� �
� �

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
������
������
������
������
�������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
����
�����
����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
����
�����
����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����

networked

machines

executing parts of

the application

Figure ���	 Distributing an application

Whereas for a distributed system� a single application is distributed to several net�
worked machines as in �gure ���� an open distributed system is composed from already
existing hardware and software components as in �gure ��
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��������������

����������������
����������������

����������������
����

���
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����

��
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������

����������
����������

����������
����������

��������������������
��������������������

��������������������
��������������������

��������������������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqq
qqq

�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������
����������������

����������������
���������������

�����������

���
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����

��
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

��������������������������
��������
��������
��
�����
������
������
������
��������
����������
������������
��
������
������
�����
������
�����
�������
���������
����������
���

system

distributed

open

forming an

using and

Somehow networked

machines

performing

services

Figure ��
	 Forming an open distributed system

A solution to the coordination problem in open systems has to provide the �glue�
that holds together the components� It has to deal with several characteristics of the
hardware and software components� such as	

� Heterogeneity of machine�� network� and operating�system architec�
tures The machines on which the software components of an open system run�
are heterogeneous� That is� they comprise di�erent machine architectures and
are from di�erent vendors� They can include personal computers� workstations or
mainframes� An open system has to deal with di�erences amongst them such as
byte�orders or value representations�

The range of operating systems running on these machines can be even broader
than that of the hardware architectures� For example� an open system has to

http://www.robert-tolksdorf.de

g

integrate operating systems that support multiple processes� lightweight threads
or single processes only� Also� very few assumptions on the outform of �le systems
can be made� Finally� the networks connecting the systems are heterogeneous�
that is they can include di�erent topologies� di�erent protocols and di�erent data�
representations on the network�

Coordinating open systems means to deal with these heterogeneities by making
them transparent to the user and abstracting from their concrete outforms when
designing a coordination system�

� Heterogeneity of programming languages used for software components
The software used in the open system can be programmed in di�erent program�
ming languages� One cannot assume that one language is available across all
hardware platforms involved or introduce a potentially world�wide restriction to
use one language only�

The purpose of services coordinated in an open system is not predictable� It may
well be that some problems call for the use of a specialized language� or one that
is considered more suited than others� Examples could be the use of a parallel
Fortran for image�processing� Mumps for database oriented functionalities or C
for text�processing functionalities�

Moreover� with the intention of setting up an open system by integrating pre�
existing software�components� a conception that allows the use of multiple pro�
gramming languages becomes indispensable�

Coordinating open systems means to abstract from the programming languages
used for the software components and to introduce some linguistic means that
focus on communication� synchronization� and services� It has to be abstract
enough to cope with di�erent models of computation materialized in languages�

� Potential high dynamics by unrestricted joining and leaving components
An open distributed system has no time of beginning or end� It is formed by the
components that joined it� In an open system there should be no restriction for
components on when they join or when they leave� Examples can be the interactive
start of some user interface component� or the replacement of one hard� or software
component by another� newer one� No component should be forced to wait for
some condition and no component should be hindered from leaving the system by
some condition�

If we understand a failure of an agent as an �unintended leave�� this characteristic
also covers the requirement that errors of soft� or hardware�component should
not in�ict other agents in an open system� The recovery of a component can be
understood as a �forced join��

Coordinating open systems means to avoid restrictions and to provide mechanisms
that can deal with these dynamics� For example� no assumption on the availability
of some component can be made� Even if it is in the system at some time� there
is no guarantee that it will not leave quickly thereafter�

http://www.robert-tolksdorf.de

g

As an example� let us look at a hypothetical open system� Say� travel agencies and
carriers want to set up a system that enables customers to book and purchase travel
tickets from their personal computers at home� Payments made by credit cards have
to be authorized by banks� Such a system is appealing as nearly all hard� and software
components involved already exist� as bookings probably can be made faster and easier
and as some savings and gains are expected by the involved companies��

What are the components involved� We can assume� that some personal computers
are installed at the homes of potential customers and that they have access to some
data lines� say via an ISDN low�band connection provided by a telecommunication
carrier� Travel agencies are connected to reservation systems� Such systems use dialup�
or leased lines to some central computer system� Their functionality includes queries
and the commitment of reservations�

O�ers and reservations are transmitted to the carriers using a reservation system
and thus connected to the proprietary reservation systems of the carriers� Finally�
authorization of credit cards is possible automatically from automata connected to some
bank or via an interactive query� Charging credit cards results changes in the customers
accounts which take place in some banking system�

Nearly all components for the planned open system are already existing� There is
no need to install new terminals such as those in agencies in the homes of potential
customers� What is needed is just the �glue� which enables components to cooperate
and ensures their sound coordination�

However� the example also shows the characteristics listed above that make up the
speci�cs of the coordination problem in open systems� The personal computer of a
customer has to work together with the system of the travel agency� That one� in
advance� has to work with a large transaction system in a bank� The machines involved
will be of di�erent architectures and will run di�erent operating systems� The network
structures range from public telecommunication lines over in�house LANs� as for an
agency� or proprietary wide�area�networks� as for banks�

All existing software components can be implemented in very di�erent programming
languages� There could be some SQL�driven database of travel�o�ers and some account�
ing program written in Cobol� A user interface for the customer could be written in
C�

Finally� dynamics arise from customers joining the system at some time to make a
booking� Agencies can be established or go out of business� as can carriers�

In this thesis� we describe a design for the �glue� that enables us to coordinate
an open system with the characteristics described� It is called Laura

� and can be
summarized for a �rst impression as follows�

We understand the software components in an open system as agents that use and of�
fer services according to their functions� Laura introduces the abstraction of a service�
space shared by all agents which is a collection of forms� A form can contain a description
of a service�o�er� a service�request with arguments or a service�result with results�

�Which	 however	 will not lower prices for traveling�
�The name is taken from the TV�series �Twin Peaks� by David Lynch	 in which the character Laura
Palmer is victim of a murder�

http://www.robert-tolksdorf.de

g

The operations of the coordination language Laura o�er linguistic means to put
and retrieve o�er�� request� and result�forms to and from the service�space� When they
are executed� a mechanism similar to Linda�s matching brings together o�er�forms and
request�forms and delivers the parameters to the service o�erer� Result�forms are again
matched with requests� so that results can be delivered to the requestor� Figure ���
illustrates this abstraction for a set of components involved in the traveling example�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������
�����������������

������������������
������������������

����

��
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

��
�����
�����
�����
�����
�����
�����
�����
������
�����
����
�����
�����
�����
�����
����
�����
�����
����
�����
�����
�����
�����
�����
�����
�

�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������

����������
����������

����������
������������������������������

��������������������
��������������������

��������������������
��������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Components

using and o�ering

services

�ightticket����
busticket����

o�er

��� ���
price
carrier

result

Agents exchanging

forms via the

service�space

����ightticket�destination

request��������������������������
�������
�����

������
������
������
������
������
�����
������
�����
������
�����
������
�����
������
������
�����
����

�����
�����
�����
�����������������������

��������������������������������������

���
�������
�����

��
�����
�����
�����
�����
�����
������
�����
�����
�����
����
�����
�����
����
�����
����
�����
�����
�����
�����
�����
����
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������������������

������������������
������������������

�����������

��
�����
�����
�����
�����
�����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
����
��

�������
�������
������������������������ ���

��������������������������������������

�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�

���
������������
������������
�������������
������������
������������
�������

�������
�������
������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�
�����
�����
�����
�����
�����
�����
�����
�����
������
����
�������
���
��������
��
���������
�
����������

����������
����������

���������� �������
��� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������

����������
����������

����������
��

������������������
����������

����������
����������

����������
����������

���������
�

��������
��

��������
��

�������
���

������
����
�����
�����
�����
�����
�����
�����
����
�����
�
����
�����
�
����
�����
�
����

���

request

busticket�destination

Figure ���	 A service�space for the traveling example

A main characteristic of our approach shows in the illustration	 There are no visible
connections amongst agents that o�er and request services� An agent knows only about
the service�space where it exchanges forms� The service provider and the requestor
remain anonymous to each other� We claim that such an uncoupled coordination style
is a well suited paradigm for open systems because of the following reasons�

In a conventional distributed system� one can assume that � due to its static nature
� an agent that performs some service can repeat this at some time in the future�
Therefore� it can be e�cient to establish a connection between agents for the passing of
multiple requests along that connection� If more than one agent o�ers the same service�
it also may be convenient to choose a particular one and to memorize its identi�er for
further requests�

Both are impossible in open systems� since there is no guarantee that a known agent
will be present at some later time� Establishing a connection hinders that agent from
leaving the system� which is an unwanted restriction� Memorizing a communication
address for later use has the potential of leading to an error� because the agent could
have left already�

http://www.robert-tolksdorf.de

Moreover� uncoupledness is part of the nature of open systems� There can be multiple
o�ers of similar services by di�erent agents� The decision on which particular service to
use should be taken very late on the basis of information that is available at runtime
only� This information can change rapidly as the example of communication costs
due to communication load shows� With connections� the decision on what agent to
communicate with is based on information about the past � the time of the establishment
of the connection� This ignores new information such as the availability of a service�
o�erer which is cheap to communicate with�

The service�space hides the issue of connections from the agents� preventing them
from having to cope with joining and leaving agents or with communication addresses
and the details of communication� Also� the concrete selection of service providing agents
are made by some mechanisms �behind the stages� to which up�to�date information
about other agents is available�

Laura therefore puts emphasis in stating what service is requested� not on which
agent is requested to perform it� A crucial point therefore is the identi�cation of services�
The next section explains the approach taken in Laura�

��� Identi	cation of services

The �glue� Laura uses to coordinate services o�ered and used by agents in an open
distributed system is the exchange of forms via the service�space� As put� forms identify
the service requested or o�ered and necessary information� The question is how to
identify a service�

In Laura� a service is described as an interface consisting of a set of operation
signatures� The signatures describe the types of the operations in terms of their names
and their argument� and result�types� It is therefore a record of function�types� A form
contains a description of this interface�type for service�identi�cation� Putting a service�
request form into the service�space starts the search for a service�o�er form so that the
interface�type of the o�er is in a matching relation to that of the request� We do not
introduce names for service�types� which is di�erent to what is done in other approaches�
such as direct naming and managed types� as we call them�

In the �rst� a set of names is de�ned for services� An example are UNIX system�
services that are �named� numerically by some port�number under which services are
provided� There is a global convention that� for example� the numeric name
� identi�es
the mail�service�

Such an identi�cation scheme is static� as names have to be completely known in
advance� ActorSpaces ��Agha and Callsen� ��� also use a direct naming system� but
allow regular expressions to be used for the identi�cation of services� For some services
named �mail�� �mail-fast� and �simple-mail�� the expression �*mail*� iden�
ti�es any one out of those three� However� the name�portion �mail� still has to be
known in advance� Such a scheme cannot be well�suited for open systems as they are
dynamic in nature and as one cannot assume identical naming schemes at a world�wide
scale� Our approach is di�erent in that we do not use names for services� but identify
them by their interface type solely�

http://www.robert-tolksdorf.de

A more dynamic scheme is de�ned for the ISO standard on open distributed pro�
cessing ODP ��ISO�IEC JTC��SC
��WG�� ��b�� �ISO�IEC JTC��SC
��WG�� ��a��
�ISO�IEC JTC��SC
��WG�� ��b�� �ISO�IEC JTC��SC
��WG�� ���� � Here� a reposi�
tory of type de�nitions is de�ned which is used to store interface types of services and
relations amongst them� A subtype�relation amongst interface types can be explicitly
declared or derived from subtyping rules�

O�ering or using a service is done via a trading function ��ISO�IEC JTC��SC
��
��� that stores o�ers and their types� It uses the type repository to determine relations
amongst o�ered and requested types and provides a requestor with the identi�er of an
object that o�ers an appropriate service� Our approach di�ers from the ODP scheme
in that we do not introduce a repository of types and � as we will see � in that there is
no connection between o�erers and requestors visible to the agents�

In Laura� no names are used at all for the identi�cation of services or for the types
of data involved in an operation� Instead� a service o�ered or requested is described
by an interface signature consisting of a set of operations signatures� The operation
signatures consist of a name and the types of arguments and parameters�

Similar to most approaches to interoperability we use an interface description lan�
guage to notate the interface of a service� This is necessary to facilitate the usage of
multiple programming languages� In section ��� we give pointers to other approaches to
interoperability and to interface description languages involved therein�

In Laura interfaces are notated in the service type language STL according to
the syntax in �gure ����� To illustrate an interface in STL� we express the type
of a service o�ered or used by a traveling agency� It consists of three operations�
getflightticket� getbusticket� and gettrainticket which take as argu�
ments some identi�cation of a credit�card� a travel date and a destination� All opera�
tions con�rm the purchase and result in a price� getbusticket also results in the
name of a bus�company� The interface of this service is expressed as	

(getflightticket: ccnumber * date * dest -> ack * price;
getbusticket : ccnumber * date * dest -> ack * price * line;
gettrainticket : ccnumber * date * dest -> ack * price)
where
ccnumber = string;
date = <day,month,year>;
day = number;
month = number;
year = number;
dest = string;
ack = boolean;

�ODP is a standard which is in the balloting phase� The references we give in this thesis refer to
those documents that were available at the time of writing� There may be changes in the further
stages of standardization that could lead to deviations from our statements� ODP parts � and � are
expected to become international standards in ����	 parts � and � are expected to reach this status in
���� ��Raymond	 ����� ODP will become the ISO�IEC standard ����� and ITU�T recommendations
X���� to X�����

�In the abstract syntax we use a boldface�font for terminals�

http://www.robert-tolksdorf.de

Service�Type�Declaration		# � Signature�Declaration � where Type�Declarations �

Signature�Declaration		# Operation�Signature f � Operation�Signature g

Operation�Signature		# Operation�Name � Type�Names �� Type�Names

Type�Names		# � Type�Name � f � Type�name g

Type�Declarations		# Type�Declaration f � Type�Declarations g

Type�Declaration		# Type�name � Type�De�nition

Type�De�nition		# Prede�ned�Type j Type�Name j
Type�De�nition f � Type�De�nition g j
h Type�De�nition f � Type�De�nition g i j
� Type�De�nition f � Type�De�nition g �

Prede�ned�Type		# string j character j number j boolean

Figure ���	 Abstract syntax of service type de�nitions language STL

line = string;
price = <number,number>.

In section ��� we formally de�ne a type system which is used in the de�nition of the
semantics of such interface de�nitions in section ������ This type system includes rules
for subtyping and this subtyping is the key for Laura�s identi�cation of services	 Given
the interface descriptions in forms� a service o�er matches a service request� if the type
of the interface o�ered is a subtype of the one requested�

Subtyping in Laura is de�ned so that a type A is a subtype of B if all values of
type A can be substituted when a value of type B is requested� The �values� we type
are services� The subtyping enables us to use a service of type A if a service of type B
is requested�

For the traveling example� the typing makes it possible to have an agency that o�ers
bus�� train� and �ight�tickets perform the purchase of a train�ticket when an agency is
requested that o�ers bus� and train�tickets� It also rules out agencies o�ering bus� and
�ight�tickets to be selected for the purchase� When following interface description is
contained in a service�form� the form matches a serve�form with the interface above� as
their types are in a subtype�relation according to our type system	

(getflightticket: ccnumber * date * dest -> ack * price;
gettrainticket : ccnumber * date * dest -> price)
where
ccnumber = string;
date = <day,month,year>;
day = number;

http://www.robert-tolksdorf.de

g p y

month = number;
year = number;
dest = string;
ack = boolean;
price = <number,number>.

But before we formalize the type system and STL�s semantics in chapter �� we have to
discuss the issue of naming in open distributed systems more detailed� as we will have
to cope with names� as the examples show at least for the operation�names� This is the
topic of the next section�

��� On naming in open distributed systems

Above we stated informally that a service interface type consists of a number of operation
signatures formed by an operation name and lists of types for arguments and results� A
relation on operation signatures � such as a subtype relation � will take the operation
names into account� An interface signature then can be understood as a record consisting
of tagged �elds� where the tag corresponds to the operation name and the value to the
type of the function�

Common equivalence relations for tagged records require all tags and their associ�
ated values to be equal� A subtyping�relation as in �Cardelli� ���� �Amadio and Cardelli�
���� requires that all �elds of the supertype have to have corresponding �elds in the
subtype with identical tags and values being in a subtype relation to those of the super�
type� Examing such a rule closer shows that type�checking involves some form of name
checking� too� In fact� for the given rule this name�checking means testing for syntactic
equivalence�

Say� �ight�carriers register some information about a traveler at check�in�� At Heath�
row Airport� London� this information is kept in a record A#hbaggagetag	 string� with�
child	 boolean� smoker	 booleani� For a transatlantic �ight this information is passed to
the destination airport� which could be JFK� New York� Information about passengers
there is stored in records of the type B#hluggagetag	 string� withchild	 booleani�

We have to test� if A conforms to B when the information is to be transferred so that
the record can be stored safely in the database at JFK� A short glance at the record
makes it clear that it should conform as we can forget the entry about smoking and as
we know that �baggagetag� and �luggagetag� mean the same thing� Applying formal
subtyping rules� however� does not identify A as being a subtype of B as the names
are syntactically distinct� There is a discrepancy between what we informally state and
what is yielded by the formal test�

�In fact	 for reasons of safety	 more and more airports install systems �baggage reconciliation systems�
that assign a number to each baggage item which is printed in machine�readable form on a tag�
Prior to loading the baggage to the aircraft	 this information is read by some mobile device and
used to verify that the owning passenger has passed the check�in to make sure that no baggage is
transported without its owner� A spokesman of Frankfurt Airport stated that the major problems
for installing this system were posed by the sheer number of baggage and passengers handled and by
the complexity of the baggage�transportation system ��Jopp	 �����

http://www.robert-tolksdorf.de

g p y

We can represent a naming system by relations between names and semantic objects�
where objects are represented by names� We call this relation R and write nRo when
the name n represents the object o�

Names can be understood as an encoding of the intended meaning in identifying
objects and the objects themself as the extension of this identi�cation� When we con�
sider a naming system in which all semantic objects are identi�ed by one single name
and a name always identi�es exactly one semantic object� we can justify a formal rule
that requires a syntactical equivalence on names� Such a system satis�es an axiom of
extensionality for n # m as nRo�
mRo� � o� # o� holds�

The example above illustrates that this assumption can be too restrictive as it disal�
lows �baggagetag� and �luggagetag� to identify the same semantic object� For an open
system in which global and consistent knowledge is absent� the same names can well be
used for di�erent semantic objects and di�erent names can refer to the same object�

Let M be a relation on names that is used to determine if two names refer to the
same semantic object� Four possibilities with respect to R arise for objects o� and o�
and names n and m as follows	

� Accidental mismatch mRo�
 nRo�
 ��mMn

� Intended match mRo�
 nRo�
mMn

� Intended mismatch mRo�
 nRo�
 ��mMn

� Accidental match mRo�
 nRo�
mMn

We can de�ne two properties	 M is said to be sound if mMn � mRo
 nRo and to
be complete if mRo
 nRo � mMn� Soundness states that no accidental match will
occur and completeness that no accidental mismatch occurs�

R is an abstract relation� today we have no means to derive M from it by some
algorithm from a given set of names and objects� However� we can reason about the
appropriateness of relations on names� We identify three outforms of M that seem
reasonable	

� nMm � n # m� This is the syntactic relation on names which we referred to
above�

�� nMm � s�n # s�m � Here� s is a function on names that can provide some
structural information� For a record� s could be de�ned as the position of a name
in a record�

�� nMm # TRUE� Here� names are ignored by de�ning all names as pairwise
matching�

Note that all three forms are not sound� as accidental matches can occur� The last
relation is complete� as no accidental mismatches can occur� The di�erence between
form one and three represents the semantics of names� the di�erence between two and
three the semantics of ordering�

For Laura� we chose the �rst form for interface�types where the names of operations
o�ered have to be syntactical equivalent� We will use the last outform for any names
that occur in the types used as arguments or results for operations� This decision is a

http://www.robert-tolksdorf.de

p

compromise between completeness � wanting to accept the �ight�information example
� and soundness � avoiding to increase the quantitative amount of accidental matches�
The type system we de�ne in chapter � includes rules to express this choice in the formal
de�nition of the semantics of STL�

After having now explained how services are identi�ed in Laura by an interface of
operations and without a global naming system� we now detail out Laura�s operations
that are used by agents to put and retrieve forms into and from the service�space and
how they are executed�

��� Laura�s operations

In ��� we brie�y described Laura�s operations that coordinate agents in an open system
by the exchange of forms via the service�space� In the previous sections� we de�ned how
services are identi�ed on these forms� Now� we de�ne Laura�s operations in detail�

In the examples� we assume that the interfaces with which we illustrated STL above
are abbreviated by some name which is locally known to agents and which should not
be misinterpreted as a service�name or global identi�ers	

small�agency� large�agency�

(getflightticket:
ccnumber * date * dest ->
ack * price;
gettrainticket :
ccnumber * date * dest -> price)

where
ccnumber = string;
date = <day,month,year>;
day = number;
month = number;
year = number;
dest = string;
ack = boolean;
price = <number,number>.

(getflightticket:
ccnumber * date * dest ->
ack * price;

getbusticket :
ccnumber * date * dest ->
ack * price * line;

gettrainticket :
ccnumber * date * dest ->
ack * price)

where
ccnumber = string;
date = <day,month,year>;
day = number;
month = number;
year = number;
dest = string;
ack = boolean;
line = string;
price = <number,number>.

A service is the result of an interaction between a service�provider and a service�user�
In Laura� two operations coordinate this interaction for the service�provider� serve
and result�

http://www.robert-tolksdorf.de

p

An agent that is willing to o�er a service to other agents puts a serve�form into the
service�space� It does so by executing serve� which takes as parameters the type of
the service o�ered and a list of binding rules that de�ne to which program variables
arguments for the service should be bound� For the example large�agency� the operation
would be formulated as

SERVE large-agency operation
(getflightticket: cc * <day,month,year> * dest -> ack * <dollar,cent>;
getbusticket : cc * <thedate.day,thedate.month,thedate.year> * dest ->

ack * <dollar,cent> * line;
gettrainticket : cc * <day,month,year> * dest -> ack * <dollar,cent>).
SERVE

This states that a service with the interface large�agency is o�ered and that a code for
the selected operation should be bound to the program variable operation� In the
case of the operation gettrainticket� the arguments provided by the service�user
should be bound to the program variables cc� day� month� year and dest� Note
that in contrast to the names used only for convenience in the de�nition of a service�
interface� the names used in the binding lists are those of variables that have to be
declared properly in the program text of the agent� The names used in the result�parts
of the operations are ignored�

When a serve is executed� a serve�form is built from the arguments� Then� the
service�space is searched for a service�request form whose service�type matches the of�
fered service by being a supertype� The code of the requested operation and the provided
arguments are copied to the serve�form and �nally bound to program variables according
to the binding list� The serve�operation blocks as long as no matching request�form
is found�

After performing the service requested� the service�provider uses result to deliver
a result�form to the service�space� This operation looks similar to serve	

RESULT large-agency operation
(getflightticket: cc * <day,month,year> * dest -> ack * <dollar,cent>;
getbusticket : cc * <thedate.day,thedate.month,thedate.year> * dest ->

ack * <dollar,cent> * line;
gettrainticket : cc * <day,month,year> * dest -> ack * <dollar,cent>).
RESULT

Here� the names used in the argument parts of the binding lists are ignored� A result�
form is built which consists of the service�interface and � depending on operation � a
list of result values according to the binding list� For the case of a gettrainticket�
they are taken from the program variables ack� dollar and cent� The agent is
responsible to store the results of the service properly in those variables� The operation
is performed immediately and the form is put into the service�space�

An agent that o�ers services usually operates in a loop consisting of the sequence
serve�perform the service�result� However� Laura makes no assumptions on this
behavior nor enforces it� This is due to the fact that no assumptions on the programming

http://www.robert-tolksdorf.de

p

language used for the agent and its execution model can be made� It can well be the case
that multiple services are performed concurrently or that the order of service provision
and result�delivery does not match the order of service�requests�

An agent that wants to use a service has to execute Laura�s third and last opera�
tion� service� Its arguments are the service�type requested� the operation requested�
arguments for the operation and a binding�list� An example is

SERVICE small-agency
(getflightticket : cc * <thedate.day,thedate.month,thedate.year> * dest ->

ack * <dollar,cent>;).
SERVICE

Here� a service with an interface small�agency is requested� The operation to be per�
formed is getflightticket� The binding lists from both the argument� and result�
part are used to access the arguments stored in the program variables cc� thedate.day�
thedate.month� thedate.year and dest� The results of the service should be
bound to ack� dollar and cent�

Up to now� we talked about a service�request form for the sake of simplicity� In fact�
when executing service� two forms are involved	 a service�put form and a service�get
form� The �rst is constructed from the service�interface and the arguments and then
inserted to the service�space� If another agent performs a serve�operation and the
service�put� and serve�forms match� the arguments are copied as described above and
the service�provider starts processing the requested operation�

The service�get form is constructed from the service interface and the binding list
for the results� Then� a matching result�form is sought in the service�space and � when
available � the results are copied and bound to the program variables�

When the request�form is entered to the service�space� it is matched with some
serve�form� thus starting the execution of the requested service by some agent� When
the result�form is retrieved� the results are bound to the local environment according to
the binding list�

The interaction of agents coordinating services with Laura consists either of putting
a request for a service to the service�space� �nding a matching o�er form and copying of
arguments or of trying to get the results of a service� by �nding a matching result�form
and copying of the results� This interaction is uncoupled� as service�provider and �user
remain completely anonymous to each other� However� there remains the problem� that
a result provides the results for a speci�c service�

Given that we have only two agents working on the service�space� the interaction
as described will always succeed� When there are more service�users and �providers�
the case can arise that two identical services are requested and result�forms for them
are emitted by providers � or a single provider that processes services concurrently �
to the service�space� In this case we want that the results of a service are given to the
agent that requested it � which cannot be achieved if the interaction is implemented
completely uncoupled and based on the matching of service�types only�

�Behind the stages� of Laura there has to be some mechanism that turns the
logical uncoupling into a concrete coupling for the period of time between the choice of

http://www.robert-tolksdorf.de

p

some service�provider� the invocation of operations of this agent and the delivery of the
service�e�ects � i�e� the results � to the service�user�

It does so by form�transformations that result in unique forms by the addition of
some unique identi�ers� When service is performed� Laura generates this unique
identi�er and extends the form by it� serve stores this identi�er within a Laura�
library � that has to be used by any agent � and extends the result�form with it� In
this case there is only one result�form with that identi�er and it can be retrieved by
service� The resulting logical connection between provider and requestor of a service
is bound to the forms and does not require unique identi�ers for agents� The logical
connection does not imply a physical connection such as a communication channel but
is manifested by the unique identi�er in the form that then is used for the matching of
unique forms�

Figure ��� on page �
 shows a service interaction and the forms involved� The
providing agent executes a serve with the o�ered interface I� a placeholder for the
operation code ?o and binding�rules for arguments ?a� The library transforms this
serve�form into one with a placeholder for a unique�identi�er u prepended�

The service�user executes a service for a service with interface J� operation o with
arguments a and binding�rules for the results ?r� The library generates unique put�
and get�forms from these which include the unique identi�er u� Then a match occurs
when I is a subtype of J in which case the arguments and o are copied� The put�form
is removed from the service�space and the serve�form delivered to the provider with
arguments �lled in with a� The library strips o� u� stores it and binds the values from
o and a according to the binding rules ?o and ?a�

The provider processes the service and performs a result with results r� The
library prepends the stored u and inserts the unique result�form to the service�space�
Here a second match occurs with the unique get�form and the results r are copied� The
result�form is destroyed and the put�form delivered to the service�user� Here the library
strips o� the unique identi�er and binds r according to the binding�rules ?r�

The following list highlights the characteristics of Laura and how they meet the
requirements of service�coordination in open distributed systems	

� Separated focus on coordination Laura does focus on the coordination of
services and introduces a complete language with respect to this task� Thereby�
no assumptions are made on programming languages the implement the processing
of services or their execution models� This is necessary to allow the use of multiple
languages in an open system�

� Uncoupled coordination Laura requires no form of coupling amongst service�
user and �provider� The logical connection with unique identi�ers is hidden and
induces no physical connections� This is necessary to cope with the dynamics of
joining and leaving agents in open systems�

� Service identi�cation by typed interfaces and subtyping In Laura ser�
vices are identi�ed by the type of their interfaces solely and selected based on a
subtyping relation� This is necessary to avoid a global naming mechanisms and to
make use of multiple o�ers for similar services�

http://www.robert-tolksdorf.de

p

Requesting agent

service(J,o,a,?r)

����
�����
�����
�����
�����
�����
������
������
�������
��������
���������

����������
�����������

����������������
��������������������������

��
������������������

�������������
�����������
����������
��������
�������
������
������
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
������
������
������
�������
��������
���������

�����������
��������������

�����������������
��
�����������������

��������������
����������
���������
��������
�������
�������
������
������
�����
�����
�����
�����
����

� �
� �

� �
� �

� �
� �

� �

������������������������
�����
�����
����

������������������������
�����
�����
����

�����
�����
����
������������������������

� �
� �
� �

� �
� �

� �

�����
�����
�����
�����������������������

������������������������
�����
�����
����

�����
�����
�����
�����������������������

�����
�����
�����
�����
�������
���������
����������

��
������������

���������
�������
������
�����
������
�����
������
������
�����
��

�����
�����
�����
�����������������������

������
������
������
��������������������
��

���

��

������������������������
�����
�����
����

��
������������

��
���������������������������

�����������������
���������
��������
�������
�������
������
�����
�������
�������
������
������
�����
������
������
�����
�����
������
������
������
������
�����
�����
����
������
�����
������
����
������
�����
������
������
����
�����
�����
�����
�

Laura�library

hJ,o,a,?riservice hJ,o,a,riservice

Laura�library

hI,o,a,?riserve

Providing agent

serve(I,?o,?a,?r)

hI,o,a,riresult

I,?o,?a,?riserveh?uid,

huid,I,o,a,?riserve

serve�put

match

huid,J,o,a,?riput huid,J,o,a,riget

huid,I,o,a,riresult

result(I,o,a,r)

hI,?o,?a,?riserve

Service space

match
get�result huid,J,o,a,riget

Figure ���	 Forms involved when coordinating a service

With these we take into account the characteristics we listed in the �rst section of this
chapter�

http://www.robert-tolksdorf.de

g p

��� Bibliographic remarks

A variety of projects have attacked the problem of coordination in open and heteroge�
neous environments� We name two of them�

At the University of Maryland� a project developed a system called Polylith Soft�
ware Bus which focusses on the use of modules written in di�erent languages by de�ning
interfaces for their functionality and connecting them via a software bus that transports
invocations in a distributed� heterogeneous environment ��Purtilo and Jalote� ���� �Calla�
han and Purtilo� ���� �Purtilo� ���� The work investigated in how interfaces can be safely
adapted when the functionality changes ��Purtilo and Atlee� ��� � on how the types of
interfaces can be checked ��Myers and Purtilo� �
� and how mapping to programming
languages can be implemented ��Shannon and Snodgrass� ��� � In contrast to Laura�
Polylith is designed for a distributed environment and does not pay special attention to
the requirements of open systems�

Another early approach to install an open distributed system was undertaken in
a joint project of the Technical University Berlin together with the Deutsche Herzzen�
trum Berlin� called Heterogeneous Document Management System HDMS ��Hansen and
Kutsche et al� ���� �Hansen and Kutsche� ��� � It focusses on the integration of patient
�les that can contain numerical medical examination data� textual documents such as
reports� graphical information such as X�ray images or video �lms from heart catheter
examinations�

In HDMS all documents are represented as objects� which encapsule data� processes
that manipulate the data and an interface� on which methods are invoked which are
executed as processes� Underlying the implementation is the �Objekt�Maschine� which
provides the glue to integrate various medical and computational hardware connected
by di�erent networks and driven by specialized software components � such as medical
image processing � in a single medical workplace�

Components of HDMS include� amongst others� an interface description and object
speci�cation language called DIDO ��Kutsche� ��� � an object�oriented role model which
is used to give a structured description of people using HDMS such as doctors or nurses
and to infer access�right to objects from it ��Gayda� �
� � and a transaction system
��Wittkugel� ��� � In contrast to Laura� service coordination is performed by a remote
object method call mechanism which involves coupling amongst objects�

The problem�space of naming has been analyzed in a taxonomy of issues in name�
systems in �Yeo and Ananda et al� ���� The notions of soundness and completeness can
be found in �Bowman and Debray et al� ���� where they are used as tools to establish
hierarchies of name�resolution functions� Distinguishing name�objects and types as in�
tention and extension to reason about names is done on a formal basis in �Marzetta�
�
��

In this chapter we gave an informal description of the coordination language Laura
which introduces a service�space which is used for the coordination of services in open
distributed systems� We introduced three operations that put and withdraw forms into
and from the service�space� They are serve which puts a service�o�er form into the
service�space which is returned �lled with an operation code and arguments� result
puts a service�result form into the space in which the results are �lled out� service�

http://www.robert-tolksdorf.de

g p

�nally� is used by a service�user where the requested operation and arguments are �lled
out and which is returned with the results of the service�

Form�transformations implement a logical connection hidden from the agents which
remain anonymous to each other� Services are identi�ed by the types of the service�
interfaces and the matching of forms depends on a subtype�relation on these interfaces�

An informal description requires a formal prescription to identify implementations
that are considered correct� This is the topic of the next chapter in which we formally
de�ne a type system to interpret service�interfaces� introduce a model of coordination
by manipulation of multisets which we use to give a speci�cation of the behavior of
agents using Laura�s operations�

http://www.robert-tolksdorf.de

Chapter �

Prescribing Laura formally

S
ervice coordination in open distributed systems with Laura has been described
informally in the previous chapter� When implementing such a system� a formal

de�nition is needed that de�nes constraints that identify correct implementations� This
chapter gives these prescriptive formal de�nitions before an experimental implementa�
tion is discussed in the next chapter�

Formal methods serve to bridge the gap between an informal description of a system
and its implementation� The formalizations in this chapter focus on the main compo�
nents of Laura� but do not de�ne a complete formal de�nition of the language� Our
intention is to prescribe correct implementations as abstract as possible and not to gain
theoretical insight�

This chapter consists of two main formal de�nitions� As described� service identi��
cation in Laura is based on typed interfaces� In section ��� we de�ne a type system
which re�ects the special considerations on naming of section ���� This type system is
used to give semantics to STL declarations in section ������

The second part is on the behavior of Laura�s operations� We de�ne a machine �
the Bag�Machine � in section ��
 which performs coordination with a multiset of some
elements� We give semantics to the Bag�Machine operations by a labeled event structure
in section ��� and to agents utilizing the Bag�Machine in section ���� After using the
Bag�Machine to specify Linda as an example� we �nally use it to de�ne the behavior of
Laura�s operations in section ����

��

http://www.robert-tolksdorf.de

yp y yp g

��� A type system with subtyping

Laura�s matching rule uses a type system for service interfaces� Typing of services is a
common approach which can also be found in ODP� for example� Using a type system
with subtyping is appropriate for open distributed systems as it allows a service�user to
identify what sort of service is requested instead of stating what agent is requested to
perform a service� Moreover� subtyping is a convenient mechanism to deal with multiple
�similar� service�o�ers� such as specializations of existing services�

The type system we use for Laura is de�ned by a set of inference rules for type
equivalence� and subtyping�relations� It consists of constants� three record�types with
di�erent treatment of names� products� three union�types with di�erent matchings for
names and function types� Type terms are taken from a language which is generated by
the following grammar� where a�� � � � � an are names and ��� � � � � �n and
 type terms�

� 		# t j ha�	��� � � � � an	�ni j ha�	��� � � � � an	�niO j ha�	��� � � � � an	�niA j �� � � � �� �n j
�a�	��� � � � � an	�n� j �a�	��� � � � � an	�n�O j �a�	��� � � � � an	�n�A j ��
�

The di�erent outforms of records and unions re�ect the di�erent forms of name�treatment
as described in section ���� ha�	��� � � � � an	�ni is called an exact record� in which the
names are used for a syntactic matching� ha�	��� � � � � an	�niO an ordered record� where
the names are unimportant and only the structural information on the order of �elds is
used� When working with an anonymous record � ha�	��� � � � � an	�niA � both the syn�
tactic and structural properties of the names are neglected� The rules below will make
it clearer what exactly this means� We start with the rules for type equivalence�

����� Rules for type�equivalence

Equivalence of types is de�ned by the inference rules in �gure ��� on page ��� They
establish an equivalence relation #� which is re�exive �ERefl � symmetric �ESym and
transitive �ETran �

For the records�types� the inference rules re�ect the di�erent outforms of a matching
on names which we outlined in the section ��� on naming in open distributed systems�
For ERecEx all names of the record �elds have to be exactly matching� that is they
have to be syntactical equivalent� All types of the �elds have to be pairwise identi�
cal� ERecOrd uses the structural information given by the position of a �eld as the
matching criteria for names for an ordered record� All �eld names are renamed to their
position and these renamed exact records have to be equivalent� Finally� ERecAnon
discards the name�information completely� Two anonymous records are equivalent if
one can be permuted so that the permutation as an ordered record is equivalent to the
other� The scheme �� � � denotes the set of permutations over a record�

EProd infers equivalence of products from the equivalence on anonymous records�
EUniEx� EUniOrd and EUniAnon de�ne equivalence for exact� ordered and anony�
mous unions similar to those for records� EUniPerm re�ects the fact that unions do
not carry structural information per se� A union�type stands for the unordered union of
�elds� so that permutation of �elds is allowed when inferring the equivalence of unions�
As the last rule� EFunc de�nes equivalence of function types as the equivalence of
argument and result types�

http://www.robert-tolksdorf.de

yp y yp g

� � � ERefl

� � �

� � �
ESym

� � � � � �
� � � ETran

�i � f�� � � � � ng � �i � �i

ha����� � � � � an��ni � ha����� � � � � an��ni
ERecEx

h����� � � � � n��ni � h����� � � � � n��ni

ha����� � � � � an��niO � hb����� � � � � bn��niO
ERecOrd

hax��x� � � � � ay��yiO � hb����� � � � � bn��niO � hax��x� � � � � ay��yi �
�

ha���������am��miO
hai� ��i� �����aim ��imiO

�
ha����� � � � � an��niA � hb����� � � � � bn��niA

ERecAnon

h����� � � � � n��niA � h����� � � � � n��niA
�� � � � �� �n � �� � � � �� �n

EProd

�i � f�� � � � � ng � �i � �i

�a����� � � � � an��n� � �a����� � � � � an��n�
EUniEx

�ax��x� � � � � ay��y� � �b����� � � � � bn��n� �ax��x� � � � � ay��y� �
�

�a���������am��m�
�ai� ��i� �����aim ��im �

�
�a����� � � � � an��n� � �b����� � � � � bn��n�

EUniPerm

������ � � � � n��n� � ������ � � � � n��n�

�a����� � � � � an��n�O � �b����� � � � � bn��n�O
EUniOrd

�ax��x� � � � � ay��y�O � �b����� � � � � bn��n�O� �ax��x� � � � � ay��y� �
�

�a���������am��m�O
�ai� ��i� �����aim ��im �O

�
�a����� � � � � an��n�A � �b����� � � � � bn��n�A

EUniAnon

�� � �� �� � ��

�� � �� � �� � ��
EFunc

Figure ���	 Rules for type�equivalence

����� Rules for subtyping

The rules for subtyping infer judgements on a subtype�relation by interpreting the rules
in �gure ��
 on page �� relative to an environment $ which contains assumptions on
subtype relations� SAss de�nes how these judgements are made�

$ denotes a set ft� �,s�� � � � � tn �,sng of subtyping assumptions on type variables
from which judgements on subtype relations are based �SAss � With rule SRefl�
SAsym and STrans together with the minimal type � � no value is of this type �
�SMin and � � all values are of this type � �SMax � �, is a partial order�

An exact record is a subtype of another if the types of �elds with identical names
are in the subtype�relation �SRecEx � The subtype can have more �elds� making it
possible to substitute a value of the subtype for its supertype by forgetting the additional
�elds�

http://www.robert-tolksdorf.de

yp y yp g

t ��s � �

� � t ��s
SAss

� � � ��� � � � ���

� � �
SAsym

� � � ��� � � � ���

� � � ���
STrans

� � �

� � � ���
SRefl

� � � ���
SMin

� � � ���
SMax

�i � f�� � � � � ng � � � �i ���i n � m

� � ha����� � � � � am��mi ��ha����� � � � � an��ni
SRecEx

� � h����� � � � �m��mi ��h����� � � � � n��ni n � m

� � ha����� � � � � am��miO ��ha����� � � � � an��niO
SRecPos

� � ha����� � � � � ai��iiO ��hb����� � � � � bj ��jiO j � i� j � l � n

� � hak��k� � � � � am��miO ��hbl��l� � � � � bn��niO i � k � m� �n	 l� � �m	 k�

� � ha����� � � � � ai��i� � � � � ak��k� � � � � am��miO ��hb����� � � � � bj ��j � bk��k� � � � � bn��niO
SRecOrd

� � A ��hb����� � � � � bn��niO A �
�

ha���������am��miO
hai� ��i� �����aim ��im iO

�
n � m

� � ha����� � � � � am��miA ��hb����� � � � � bn��niA
SRecAnon

� � h����� � � � � n��niA ��h����� � � � � n��niA

� � �� � � � �� �n ���� � � � �� �n
SProd

�i � f�� � � � � ng � � � �i ���i n � m

� � �a����� � � � � an��n� ���a����� � � � � am��m�
SUniEx

� � ������ � � � � n��n� �������� � � � �m��m� n � m

� � �a����� � � � � an��n�O ���a����� � � � � am��m�O
SUniOrd

� � A ���b����� � � � � bm��m�O A �
�

�a���������an��n�O
�ai� ��i� �����ain ��in �O

�
n � m

� � �a����� � � � � an��n�A ���b����� � � � � bm��m�A
SUniAnon

� � �� ��� � � � ���
�

� � � � � ���
� � �� SFunc

Figure ��
	 Rules for subtyping

Rule SRecPos de�nes the subtype relation for records ordered by the positions of
�elds� Here the names are replaced by their position in the record� thus using structural
information for the matching on names� In contrast to the exact matching� additional
�elds can occur only at the end of the subtype�

Thus� the structural information �position� is too strong to what we intend� There�
fore� we add rule SRecOrd allowing additional �elds at any place of the subtype as
long as the order of the �elds also existent in the supertype is obeyed� The structural
information we use here is �order� instead of �position� only�

Finally� SRecAnon discards names and structural information by de�ning subtyp�
ing on anonymous records by requiring one permutation of the subtype to be in the

http://www.robert-tolksdorf.de

yp y yp g

ordered subtype relation� As with the equivalence relation� subtyping on products is
inferred from the subtype relation on anonymous records�

For unions to be in a subtype relation that ensures substitutability� the subtype
may not have more variants than the supertype� SUniEx takes the syntactic name
matching for exact unions into account� For ordered unions� SUniOrd discards the
names but uses the positions of the variants� SUniAnon allows permutations to be
used for anonymous unions�

For function types� we de�ne a contravariant subtyping by rule SFunc� A function
type is a subtype of another when its arguments are supertypes to those of its supertype
and the results are subtypes to those of the supertype� By this� a subtyped function
can safely replace its supertype function by discarding the additional arguments and by
forgetting the additional results�

The type system we de�ned is underlying Laura�s service type concept� The seman�
tics of expressions from Laura�s service type de�nition language as de�ned in �gure ���
in section ��
 are given in the next section�

����� The semantics of Laura�s service�type de	ni�

tions

The semantics of a type expression is de�ned by interpreting it as a type in the above
type system� The interpretation is relative to a �nite set - of type de�nitions which
associate type variables to types� - is required to be wellformed� meaning that all
type�variables of the expression have to be in the domain of -�

The environment - of an interface type contains Laura�s ground types string�
character� number� and boolean together with those type declarations found in the
where part of the signature declaration� The interpretation of a signature t in its
environment - is written ft� �

�

��� � � � � tn �
�

�ng�t for type variables t�� � � � � tn and types
��� � � � � �n associated by -�

De�nition
 �Type expression semantics� For a term t from STL� the type de�
noted by t is written � ��t�� and de�ned as depicted in �gure ��� with respect to the
set of the following of prede�ned type�names	 fstring�

�

string� character�
�

character�
number�

�

number� boolean�
�

booleang�

Interpreting the �rst example service type in section ��
 on page �� is done in the
environment

fstring�
�

string� character�
�

character� number�
�

number� boolean�
�

boolean�
ccnumber �

�

string� date�
�

hnumber� number� numberiA� day�
�

number�
month �

�

number� year�
�

number� dest�
�

string� ack�
�

boolean� line�
�

string�
price�

�

hnumber�numberiAg

The interpretation results in the type

http://www.robert-tolksdorf.de

yp y yp g

� ��signature where type�declarations�� #
prede�ned � ��type�declarations���� ��signature��

� ��operation�signature� � operation�signature��� #
h� ��operation�signature���� � ��operation�signature���i

� ��operation�name � arguments �� results�� #
operation�name 	 � ��arguments�� � � ��results��

��type�declaration� � type�declaration��� #
��type�declaration��� � ��type�declaration���

��type�name � type�de�nition�� # ftype�name �
�

� ��type�de�nition��g
� ��type�de�nition� � � � �� type�de�nitionn�� #

h� ��type�de�nition���� � � � � � ��type�de�nitionn��iA
� ��h type�de�nition�� � � � �type�de�nitionn i�� #

h� ��type�de�nition���� � � � � � ��type�de�nitionn��iA
� ��� type�de�nition�� � � � � type�de�nitionn ��� #

�� ��type�de�nition���� � � � � � ��type�de�nitionn���A

Figure ���	 Semantics of STL�expressions

hget�ightticket	 hstring� hnumber� number� numberiA� stringiA �
hboolean�hnumber�numberiAiA�

getbusticket	 hstring�hnumber�number�numberiA� stringiA �
hboolean�hnumber�numberiA�stringiA�

gettrainticket	 hstring�hnumber� number� numberiA� stringiA �
hboolean�hnumber�numberiAiAi�

Let another booking�agency o�er a service with the interface in �gure ���� Interpreting

(getflightticket: ccnumber * date * dest -> ack * cashed;
getbusticket : ccnumber * date * dest -> ack * cashed;
gettrainticket : ccnumber * date * dest -> ack * cashed)
where
ccnumber = string;
date = <number,number,number>;
dest = string;
ack = boolean;
cashed = <number,number>.

Figure ���	 A service type for travel booking in STL

this de�nition results in the type

http://www.robert-tolksdorf.de

g

hget�ightticket	 hstring� hnumber� number� numberiA� stringiA �
hboolean�hnumber�numberiAiA�

getbusticket	 hstring�hnumber�number�numberiA� stringiA �
hboolean�hnumber�numberiAiA�

gettrainticket	 hstring�hnumber� number� numberiA� stringiA �
hboolean�hnumber�numberiAiAi�

Applying the subtyping rules on these types results in the judgement that the example
type from section ��
 on page �� is a subtype of the one in �gure ����

In this section we de�ned a type system on which Laura�s STL�expressions are
given semantics� The second part of this chapter deals with the behavior of Laura�s
operations� However� we do not de�ne it directly� but introduce a more abstract model
of coordination with multisets which can be applied to any operations that are com�
binations of the addition and removal of some elements to and from a multiset� We
exemplify this for Linda and then �nally de�ne the behavior of Laura�s operations in
this model�

��� A formal model of coordination
 The Bag�Machine

In chapter
 we described the coordination language Linda� which coordinates agents in
a parallel system using the tuple�space and four associated operations� In a similar way�
Alice and Laura make use of a shared multiset of tuples and forms� In this section
we de�ne a machine and its behavior that forms a basis for uncoupled coordination in
a Linda�like fashion� It omits the details of speci�c coordination languages such as the
outform of elements and will be used in the subsequent sections for a formal behavioral
de�nition of the coordination languages Linda and Laura�
In a coordination language that uses a Linda�like approach� three issues are of speci�c
interest	

� Operations that deposit and withdraw elements to and from a shared multiset of
elements�

� the structure of elements and means to construct and access them�

� a rule that guides the removal of an element with respect to a given pattern�

For Linda� these issues are covered by the operations out�eval and in�rd� the tuples
and associated constructors h�i together with binding�rules into a local environment� and
�nally the matching�rule given as a relation on tuples and templates� Similar� Laura
uses forms and another matching�relation and service�serve�result to put and
withdraw forms to and from the service�space�

We can reason about operations on a multiset without having to detail out in what
combination they form operations of a concrete coordination language� Here� we de�ne a
machine � the Bag�Machine � capable of performing operations on a multiset of elements
shared by agents� We de�ne rules for building terms of these operations enabling us to

http://www.robert-tolksdorf.de

g

subsequentially compose them into operations of concrete coordination languages� In
the following we use the terms �bag� and �multiset� synonymously�

Let Bag�Machine be a machine that is able to perform operations on a multiset of
elements with respect to some rule� Its operations are add� the deposition of an element
in the bag and remove� the removal of an element from the bag that is in relation match
to another element given as an argument� remove makes a nondeterministic choice if
multiple elements of the bag match� If no matching element exists� the operation is
delayed until one becomes available as the consequence of some add operation�

The operations of Bag�Machine shall be invoked by agents that are coordinated by
using the shared multiset� These agents can be expected to work in a concurrent and
distributed environment� Possible concurrent usages of Bag�Machine�operations include
the following combinations	

� add�operations can be performed concurrently� They do not interfere� even if
elements of the same sort are added�

�� remove�operations can be performed concurrently if the sets of elements being in
the match�relation with the given patterns for the operations are pairwise disjoint�

�� As many remove�operations resulting in elements of the same sort can be performed
concurrently as how often this sort of element occurs in the bag�

�� add� and remove�operations on the same sort of element can be performed concur�
rently if there are as many occurrences of elements without those added as there
are remove�operations executed�

In order to specify the e�ects of the operations of Bag�Machine� one would have to
make statements about the number of occurrences of elements within the multiset of
elements� Assuming that only one agent is using the Bag�Machine� the e�ect of add can
be described as incrementing the number of occurrences of that element by one� that of
remove as decrementing the number of occurrences of one matching element by one�

However� if we take case � above� and allow multiple agents to use the Bag�Machine
concurrently� this number is undetermined for the single operations� as one agent adds
an element and another performs remove concurrently on the same element� leaving the
total number unchanged�

Determining the number of elements in the multiset requires some form of interleav�
ing of operations so that at some time statements about the number of elements can
be made without interference of concurrent operations� However� such an interleaving
has the drawback to result in a total ordering of operations in which orderings caused
by the semantics�preserving restrictions on concurrency are indistinguishable from those
caused by interleaving� The ordering also re�ects a choice on the atomicy of operations�

We argue that in the light of distributed systems� requiring a total order of operations
is counter�intuitive and does neglect the bene�ts of distributed and concurrent systems
which make them attractive� A distributed system does allow for truly concurrent and
overlapping operations� it is desirable that nodes operate autonomously and a global
state is avoided�

http://www.robert-tolksdorf.de

g

Guided by these observations� we decide to de�ne the behavioral semantics of the
Bag�Machine and of agents using it in terms of labeled event structures� Labeled event
structures combine true concurrency with non�determinism allowing us to avoid the
discussed problems�

Prior to the de�nition of event structures for operations on a multiset of elements
by the Bag�Machine� we introduce a more detailed understanding of the multiset itself�
Above� we listed access�combinations to the multiset that can take place concurrently�
Let us recapitulate in detail to what our statements refer� Combination � refers to some
elements� whether of the same sort or not�
 refers to elements that are of distinct sorts�
� refers to elements of the same sort� but makes a statement about di�erent elements�
as does ��

We notice that there are two ways of reference to elements	 As objects distinguished
by their sort and as objects distinguished by their identity� In the following we speak
of elements for those objects distinguished by their sort and instances for those distin�
guished by their identity�

The two ways of reference also can be found when talking about the matching
mechanism and its behavior� Also� we notice di�erent way of talking about object
in the matching�rule and statements about concurrent behavior� A matching�rule is
de�ned on elements and abstracts from instances� Dealing with behavior that makes
the non�deterministic selections from the matching�rule concrete involves talking about
instances�

The two ways of reference have counterparts in two mathematical notions of multisets
discussed in �Monro� ���� multi�sets and multinumbers��

Let an example multiset of natural numbers consist of two instances of the element
��� called a and b and one instance of
�� called c� A multinumber is written as a set
of elements that are labeled with numbers	 f����
��g� Let E be the set of all elements
which can occur in a multiset �f���
�g for the example � A multinumber then is a
function E � IN�� determining the labels in the above notation� Operations on multisets
can be de�ned by using operations on natural numbers applied to the multinumber�

A second view can be taken by a multi�set which de�nes a multiset as a pair hX�� �i�
consisting of a set X� of instances and an equivalence relation � on X�� Our example
would be notated as hfa� b� cg� a�bi� re�ecting that a and b are considered to be of �the
same sort� as they both are instances of ���

Monro investigates in a category of multisets and gives de�nitions for multiset oper�
ations using category theory� Although a multi�set has an associated multinumber� not
all operations for multi�sets are induced for multinumbers and vice versa�

We introduce a third view on multisets as certain objects in ��structures ��Mahr and
Str�ater et al� ���� �Pooyan� �
� � The theory of ��structures adopts the understanding
that a set is given by the fact that statements about membership can be made� The
statements of membership result in a relation amongst a set of objects� the carrier�
Thus� an ��structure is a pair M # �M� � � where M is the set of objects and � a binary
relation on M �

�In order to distinguish multisets in our discussion and their understanding in the referenced paper	
we write �multi�set� to denote the special understanding of a multiset in contrast to that of a
multinumber� Where the referenced paper uses the term multiset	 we write multi�set�

http://www.robert-tolksdorf.de

p g

We understand a multiset as being represented by a set of names for instances taken
from an in�nite set of names N � for the example this is fa� b� cg � N � Each name
stands for an instance of an element from the set of possible elements of the multiset E
� IN for the example� The set of names corresponds to X� from the multi�set and E to
that of the multinumber�

The example multiset is represented as an ��structureM # �M� � with M # N�E #
fa� b� c� ���
�g and � # fa���� b���� c�
�g� Figure ��� depicts the three views for another
example multiset consisting of three instances of
� called a� b and c� and two instances
of �� called d and e�

 �

�a� Multinumber

a
GF ED�

�A BC
�

d � e b � c

�b� Multi�set

������	

�
��

��
� �

��

��

�������	

�
��

��
�
��

��

a������	
 b������	
 c������	
 d������	
 e������	

�c� ��structure

Figure ���	 Di�erent views on a multiset

Representing a multiset as an ��structure captures both of the above views on multi�
sets and allows us to integrate the element� and instance�level within a single framework�
The add�operation then is the insertion of a relation between an instance and an ele�
ment� remove is its removal� Given that the ��structure is initially empty� add inserts
both an element and an instance together with a relation between them if the element is
not in the ��structure� Otherwise only a new instance and a relation is inserted� remove
removes an instance and the relation to an element� It also removes the element if there
are no instances related to it� We now de�ne the notations and mechanisms we will use
later to de�ne the behavior of Bag�Machine by giving a labeled event structure� Repre�
senting a multiset as an ��structure captures both of the above views on multisets and
allows us to integrate the element� and instance�level within a single framework� The
add�operation then is the insertion of a relation between an instance and an element�
remove is its removal� We now de�ne the notations and mechanisms we will use later to
de�ne the behavior of Bag�Machine by giving a labeled event structure�

��� Technical preliminaries for the Bag�Machine

����� Labeled event structures

We follow �Winskel� ��� subsequentially and refer for the mathematical discussion of
event structures to this source� Event structures provide us with true concurrent models
of processes thus allowing us to follow our intent to give a non�interleaving behavioral
speci�cation�

http://www.robert-tolksdorf.de

p g

An event is the occurrence of an action and can be localized in space and time�
That is � as Winskel puts it �� any two events can be separated by some real number
r that gives a radius in spheres of space and time� Modeling concurrent processes with
event structures deals with constraints on the occurrence of events that re�ect their
dependencies� con�icts amongst them and � in consequence � their independence�

The relation � on events expresses causal dependency� meaning that e � e� if the
occurrence of e� depends on the occurrence of e� E # �E�� is called an elementary event
structure and is a set E of events partially ordered by �� An elementary event structure
usually has to satisfy the axiom of �nite causes� that is �e � E 	 fe� � Eje� � eg is
�nite�

An elementary event structure de�nes a partial order that imposes determinism�
Dealing with non�determinism requires the ability to express that one out of many
possible behaviors is chosen� This means that the occurrence of one event rules out the
possibility of other events� This is captured by the notion of con�ict amongst events�
expressing that only one out of them can happen and that if it happens all others will
not happen�

It is taken into account by a prime event structure E # �E�!�� consisting of
a set E of events� partially ordered by � augmented with the binary� symmetric and
irre�exive con�ict relation ! on events� The con�ict relation satis�es e!e� � e�� � e!e��

for e� e�� e�� � E�
A stable event structure E # �E�!�� de�nes a more general model� Let Con be

the set of those subsets X � E that are con�ict�free� i�e� �e� e� � X 	 ��e!e� � Then
�� Con�E is the enabling relation which satis�es �X � e
 �X � Y � Con � Y � e�
Thereby the occurrence of an event is not dependent on the occurrence of a single event
but of sets of potential events�

In a labeled event structure E # �E�!��� L� l events are labeled from an alphabet of
actions L by a label ling function l 	 E � L� That is� an event is associated a label which
describes the �nature� of the event � for example what action involves its occurrence�

To summarize	 Labeled event structures relate events by causal dependency� by
con�ict and de�ne unrelated events as independent� They induce a structure in which
con�ict free subsets de�ne allowed occurrences of events� The crucial point is that
all independent events can occur truly concurrent� We now introduce the sequential
concatenation of two labeled event structures�

De�nition � �Pre�xing �following Winskel�� Let E be a labeled event structure
consisting of �E�!��� L� l � Let a be a label� De�ne aE to be the labeled event structure
�E ��!����� L�� l� with

E � # f��� a g � f��� e je � Eg

e��!
�e�� � �e�� e� 	 e�� # ��� e�
 e

�
� # ��� e�
 e�!e�

X �� e� � e� # ��� a � �e� # ��� e�
 ��� a � X
 fej��� e � Xg � e�

L� # fag � L

l��e� #

�
a � if e� # ��� a
l�e � if e� # ��� e

http://www.robert-tolksdorf.de

p g

Pre�xing adds an event labeled a to the structure and changes the enabling relation so
that the occurrence of all events depending on the occurrence of event ��� a � which is
always enabled� So� before anything can happen� ��� a has to happen� We extend this
de�nition which pre�xes an event�structure with a single event into a concatenation of
two event�structures�

De�nition � �Concatenation� Let E� # �E��!����� L�� l� � E� # �E��!����� L�� l�
be labeled event structures� Let a be a label� De�ne the concatenation E��E� to be the
labeled event structure E�#�E ��!����� L�� l� with

E � # f��� e je � E�g � f��� e je � E�g � f��� a g

e��!
�e�� � ��e�� e� 	 e�� # ��� e�
 e

�
� # ��� e�
 e�!�e�

���e�� e� 	 e�� # ��� e�
 e
�
� # ��� e�
 e�!�e�

X �� e� � �e� # ��� e�
 fej��� e � Xg �� e�

��e� # ��� a
 fej��� e � Xg � Con�

��e� # ��� e�
 fej��� e � Xg �� e�
 ��� a � X

L� # L� � L� � fag

l��e� #

���
��

l��e � if e
� # ��� e

l��e � if e
� # ��� e

a� if e� # ��� a

Concatenation of two event structures results in an event structure in which �rst a
con�ict free subset of events from the �rst event structure has to happen� after which a
con�ict free subset of events from the second can happen� This is achieved by introducing
an event ��� a which depends on one of the con�ict free subsets of E� and which is
included in all enabling sets of events of E�� ��� a thus can only happen after E� and
anything from E� only after ��� a � Figure ��
 on page

 depicts the concatenation of
two identical event structures�

��� e�
� �� ��� e� ED

�

�A
��

��� e�
� �� ��� e�

��� e�
BC
�

GF ��

�
�

� �� ��� a

�
��qqqqqq

� ��

�
��MM

MMM
M

��� e�
BC
�

GF ��

�
�

��� e�
BC

�

GF ��

��� e�

Figure ��
	 Concatenation of event structures

In our graphical representations we usually put the label of an event in a box�
sometimes annotated with the event ��label� e � use dashed lines �� � � amongst events
that are in con�ict and arrows ��� to denote the enables�relation� Where the name of

http://www.robert-tolksdorf.de

p g

an event is of more interest than its label � as in the example above �� we put the name
of the event in the box� If an event is enabled by a set of events� these arrows join� For
the sake of readability we mostly leave out enabled relations resulting from transitivity�

����� Open labeled event structures

We decided to use labeled event structures to de�ne the behavior of the Bag�Machine
because they provide a truly concurrent model� Communication of elements via the bag
is asynchronous and without direct connections amongst agents� Such an uncoupled
communication regards the deposition and removal of elements as distinct actions� Thus�
it is not possible to model communication as a single event in an event structure� which
is the approach in �Winskel� ����

We now de�ne open labeled event structures in which write and read actions are
modeled as two distinct communication events� We classify events as follows	

De�nition � �Classi�cation� Let L be a set of labels and R�W � L disjoint subsets
of labels� Let l�e � R� if e is involved in an asynchronous read action and l�e � W for
an event that is involved in an asynchronous write action� Call R�W a classi�cation�

The classi�cation identi�es labels of events that can be involved in some communication�
They will be used in the parallel composition of event structures and are related by an
associator	

De�nition � �Associator� De�ne w to be a function on labels of events involved in
read operations that results in a label a corresponding write operation has to have� We
call w an associator�

An associator is a function R � W and identi�es for a given label in R the label of
an event that is to be involved in the same communication� With these� we can de�ne
open labeled event structures	

De�nition 	 �Open labeled event structure� Let E be a labeled event structure�
R�W a classi�cation with R �W � L and w an associator that is de�ned for all labels
in R� We call ER�W�w an open labeled event structure �OLES �

OLES are called open� as the labels that w results in are probably not used locally� The
concatenation of OLES is de�ned as	

De�nition
 �Concatenation of OLES� The concatenation of OLES ER��W��w
� and

ER��W��w
� with W� �W� # �� is de�ned to be �E��E�

R��R��W��W��w�

The concatenation does not change the classi�cation as the additional events are not in�
volved in communication but is de�ned only for event structures on the same associator�
The parallel composition of OLES is de�ned as	

http://www.robert-tolksdorf.de

g

De�nition � �Parallel composition of OLES� Let the OLES ER��W��w
� be de�ned

by �E��!����� L�� l� and ER��W��w
� # �E��!����� L�� l� with W� � W� # ��� Their

parallel composition ER��W��w
� kER��W��w

� is de�ned as ER��W ��w # �E ��!����� L�� l� with

E � # f��� e je � E�g � f��� e je � E�g

e��!
�e��� ��e�� e� 	 e�� # ��� e�
 e�� # ��� e�
 e�!�e�

���e�� e� 	 e�� # ��� e�
 e�� # ��� e�
 e�!�e�

��l�e�� � l�e
�
� � R
 l�e�� # l�e��

X �� e�� �e� # ��� e�
 fej��� e � Xg �� e�

f��� e jl��e � W�
 l��e # w�e� g � X

��e� # ��� e�
 fej��� e � Xg �� e�

f��� e jl��e � W�
 l��e # w�e� g � X

L� # L� � L�

l��e� #

�
l��e � if e

� # ��� e
l��e � if e

� # ��� e

R� # R� �R�

W � # W� �W�

The parallel composition results in an event structure in which events are in con�ict if
they are in con�ict in the original structures or if they are read�events with identical
labels� The enabling relation makes a read�event depending on a corresponding write�
event from the other structure�

The composition operation relates the corresponding read� and write�events from
both structures� The relations re�ect which events can be involved in the same com�
munication� Also� they re�ect the uncoupled communication style as a write event
enables multiple corresponding read events� However� these are in con�ict� so con�ict
free subsets contain exactly one read event for one write event�

We will use the parallel composition of OLES to model the behavior of sets of agents
that coordinate using the Bag�Machine� Figure ����b on page �
 contains an example
of its application�

��� A labeled event structure for the Bag�Machine

We now can de�ne the correct behavior of processes implementing the Bag�Machine by
giving a labeled event structure B # �E�!��� L� l � The events of interest E occur when
executing add� and remove�operations�

Let the multiset on which the Bag�Machine works be represented as an ��structure
M as discussed above� It is de�ned as M # �M� � where M � N � E is the set of
elements and instances representing the multiset and � a relation N � E associating
instances to elements�

http://www.robert-tolksdorf.de

g

The set of labels for the event structure is de�ned as a set of pairs of an operation
name and a name� representing the identity of the object on which the operation is
carried out� Thus� L # f�o� n jo � fadd� removeg� n � Ng�

The labeling function l labels events from E with labels from L so that an event e
resulting in the execution of add and in the insertion of an ��relationship for the instance
named n in the ��structure M gets the label �add� n and an event f resulting in the
execution of remove and in the removal of the ��relationship for the instance named n

in the ��structure M is labeled �remove� n �
Furthermore� the labeling function has the property that �e�� e� � E 	 l�e� #

�add� n
 l�e� # �add� m � n �# m for e� �# e�� that is no two events are involved
in the insertion of equally named instances� or � equally � that instances have unique
names�� With these� we de�ne the con�ict� and enabling�relations of B as

e�!e� � �l�e� # �remove� n
 �l�e� # �remove� n

X � e � X # fe�g
 �l�e� # �add� n
 �l�e # �remove� n

The con�ict relation re�ects that an instance can be removed only once� It also spec�
i�es the non�deterministic nature of element�removal in the bag machine� Let E be
fe�� e�� e�g with l�e� # �add� n and l�e� # l�e� # �remove� n � Then we have
fe�g � e� and fe�g � e� re�ecting that an instance can be removed by some event
due to the uncoupled nature of the bag and the lack of addressing� However� since
e�!e�� a non�deterministic choice has to be made on which events happens� i�e� which
remove�operation involving e� or e� results in the instance named n�

The enabling relation re�ects that a remove�operation on a speci�c instance depends
on an add�operation on this instance� As the enabling set of events has � by the de�nition
of l � only one element� the enabling relation is equal to causal dependency as in a prime
event structure�

It seems possible to make the labeling function less constrained regarding the �add� n �
labels and to extend the con�ict relation ! by events �e�� e� with �l�e� # �add� n

�l�e� # �add� n � This� however would � by the inheritance of ! from � � bring events
labeled �add� n and �remove� n in con�ict�

Let us return to the access patterns we enumerated in section ��
 and check if the
event structure B identi�es them as independent and thus concurrent and potentially
overlapping� For case �� the concurrent add�operations� they involve a set of events
fei� � � � � ekg which are labeled by �add� n � � � � � �add� o � These events are identi�ed as
independent� Case
 involves events fei� � � � � ekg labeled �remove� n � � � � � �remove� o �
These are identi�ed as independent as the labels di�er because they operate on in�
stance of di�erent elements� so the names have to be unequal� For �� two sets of events
are involved	 fei� � � � � ekg and fel� � � � � eog� which are labeled �add� n � � � � � �add� o and
�remove� n � � � � ��remove� o � Here� the enabling�relation constrains all remove�operations
to be enabled by corresponding add�operations on the same name but imposes no restric�
tion on the concurrent occurrence of the remove�events� Finally� case � is a combination
of cases � and ��
�In the following	 we therefore sometimes use the terms instances	 names and names of instances
synonymously�

http://www.robert-tolksdorf.de

g g g

�remove� o �A
ED�����

BC�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � �

�add� o
BC
�

GF ��

ED
�

�A
��

�remove� m �A
ED�����

BC�
�
�
�
�
�
�

� �

�remove� n

�
�

�add� n � ��

BC
�

GF ��

�remove� n

�add� m
BC
�

GF ��

� �� �remove� m

�remove� o

Figure ���	 An event structure for the bag�machine

Figure ��� depicts a set of events for three add� and remove�operations including
con�ict and enabled relations� The events having a thicker border form one con�ict�free
subset of B� and can be identi�ed as correct behavior of the Bag�Machine�

The de�nition of the behavior of Bag�Machine in terms of an event structure does not
impose unnecessary restrictions on an implementation of the Bag�Machine� It turned out
that the outlined understanding of multisets is enabling for this solution� However� the
event structure speci�es only the behavior of processes implementing the Bag�Machine�
In the next section we de�ne the behavior of terms of operations on the Bag�Machine
and that of a system of agents�

��� The behavior of agents using the Bag�Machine

So far� we spoke of �some agents acting on the Bag�Machine concurrently�� The event
structure in the previous section considered only the process implementing the Bag�
Machine� To de�ne coordination languages that use the Bag�Machine as the underlying
synchronization and communication mechanism� we will form terms of operations and
consider systems of agents working concurrently� In this section we introduce operators
for generating terms and a de�nition to describe a system of concurrent agents� When
de�ning a language based on these operators� their behavioral semantics is given by the
de�nitions here�

Agent�terms will be expressed in a language L with the syntax

p		#halt j add�e	
p j remove�e	
p j local
p

http://www.robert-tolksdorf.de

g g g

halt identi�es the end of an agent�term and denotes its termination� Most of the time
this will not be explicitly expressed� add means the addition of some element and remove
the removal of some element using the Bag�Machine� local denotes some local operation
which has no external e�ects and corresponds to computation�

A system of agents working concurrently using the Bag�Machine for uncoupled com�
munication and synchronization has the form

p�kp�k � � � kpn

Here� k is the parallel composition of agents that execute some process given by a term
and synchronize and communicate using the Bag�Machine only� We will give semantics to
terms and systems of agents by open labeled event structures as de�ned in section ����
�

Events involved in read� and write�actions are always labeled with pairs �o� n with
o � fadd� removeg and n � N as described in the previous section� Thus� the labels from
some set L can be classi�ed by mappingRB�L # f�remove� n jn � N
�remove� n � Lg�
the labels of events that are involved in the reading of elements from the bag and
WB�L # f�add� n jn � N
 �add� n � Lg� involved in the writing of elements� An
associator wB can be given by wB��remove� n # �add� n for some n from N �

De�nition � �Denotational semantics� For a term t from L� the denotation of t is
written ��t�� and de�ned as follows with respect to RB�WB and wB

��halt�� # � ��� ��� ��� ��� �� ��� ���wB

��add�� # �feg� ��� ��� �add� n � l�e # �add� n ���f	add�n
g�wB

��remove�� # �feg� ��� ��� �remove� n � l�e # �remove� n f	remove�n
g� ���wB

��local�� # local ��� ���wB

��t��t��� # ��t���
RB �WB�wB ���t���

RB �WB�wB

��t�kt��� # ��t���
RB �WB�wBk��t���

RB �WB�wB

That is� halt denotes an empty OLES which contains no events and an empty classi��
cation� add denotes an event structure involving an event e which is uniquely labeled
�add� n and classi�ed as writing� The event structure denoted by remove is similar with
l�e being classi�ed as reading� The semantics of local is left open as it depends on the
computation language the coordination language is combined with� We know� however�
that it involves no coordination� thus no labels are classi�ed as reading or writing� The
sequential composition of terms denotes event structures generated by our concatena�
tion operation� A set of agents executing terms is the parallel composition of the open
labeled event structures denoted by the terms�

Our open labeled event�structures and L o�er no choice�operation or choice�construct�
as one probably would expect� In fact� the choice is not necessary for our purposes�

In section ����� we demonstrated forAlice� how if�then�else constructs can be imple�
mented in a coordination languages that has no control structures except for sequencing�
The mechanism was to encode the condition and the two branches in a tuple and to
have agents waiting that start one branch�process depending on the condition�

http://www.robert-tolksdorf.de

g g g

One of them was selected by matching the condition value with a constant true or
false� Thus� the choice of which branch to take is made by the matching�mechanism�
Therefore� we do not introduce a choice�operation here�

As an example for an open labeled event�structure for a system of agents� �gure ����a
on page �
 shows the event�structures denoted by the terms remove�e � add�e �remove�f
and add�f �remove�e � The events a� and a� are those introduced by the concatenation�
In �gure ����b they are composed into a system of agents with appropriate enabling
and con�ict relations�

If we now remove all events and relations that are either local or result from se�
quencing within the processes� the event�structure in �gure ����c results� In fact� this
event�structure corresponds to the event�structure we illustrated in �gure ��� for the
process that implements the Bag�Machine�

We can formalize this extraction of the Bag�Machine process from a system of agents
by the following coord�operation on open labeled event�structures that use the Bag�
Machine for coordination	

De�nition
� �Coordination structure� Let E be an open labeled event structure
�E�!��� L� l RB�RB �wB � The coordination structure then is the labeled event structure
E�#�E ��!����� L�� l� � written coord�E with

E � # fejl�e � RB � l�e � WBg

e��!
�e�� � e�� � E �
 e�� � E �
 e�!e�

X �� e� � �e � X 	 e � E �
 e� � E �

L� # fljl � RB � l � WBg

l��e� # l�e

It turns out that coord���t�k � � � ktn�� #B� the event�structure for the Bag�Machine as
de�ned in section ���	

Theorem
 With respect to RB� WB� wB� a coordination structure of the open event
structure denoted by the parallel composition of terms t�� � � � � tn equals to the event
structure B for the Bag�Machine process� that is coord���t�k � � � ktn�� #B�

Proof
 From de�nition �� events in ��t�k � � � ktn�� are labeled �add�n or �remove�n
with n � N or are labeled according to local� Also from de�nition �� RB is a set
f�remove� n jn � Ng and WB a set f�add� n jn � Ng�

From de�nition ��� the set of events in coord���t�k � � � ktn�� is a set E with �e �
E 	 �l�e # �add� n � n � N � �l�e # �remove� n � n � N � These events are the
only ones that occur in B� The set of labels in coord���t�k � � � ktn�� is L with �l � L 	
�l # �add� n � n � N � �l # �remove� n � n � N � This equals to the set of labels
f�o� n jo � fadd� removeg� n � Ng de�ned for B�

From de�nition � we have that an event e involved in ��add�� is labeled �add� n and
an event e involved in ��remove�� is labeled �remove� n � Therefore� the labeling function
in coord���t�k � � �ktn�� labels event according to the labeling function for B�

http://www.robert-tolksdorf.de

g g g

�remove� m

�add� m � �� �a�
� �� �remove� n

�add� n � �� �a�
� �� �remove� m

�a� Uncoordinated agents� ��a���	 ��a���	 ��a���

�remove� m ED

BC�
�
�
�
�
�
�
�
�

�add� m � ��

BC
�

GF ��

ED
�

�A
ED�A

��

�a�
� �� �remove� n

�add� n � ��

BC
�

GF
BCGF

��

�a�
� �� �remove� m

�b� Coordinated agents� ��a�ka�ka���

�remove� m ED

BC�
�
�
�
�
�
�
�
�

�add� m
BC

�

GF ��

ED
�

�A
ED�A

��

�remove� n

�add� n
BC

�

GF
BCGF

��

�remove� m

�c� The Bag�Machine coordinates� coord���a�ka�ka����

Figure ���	 The Bag�Machine process is embedded in a system of agents

From de�nition � events e�� e� in ��t�k � � � ktn�� are in con�ict if �l�e� � l�e� � RB

l�e� # l�e� � As RB is f�remove� n jn � Ng� this equals to the con�ict relation for B�
There are no other events that are in con�ict in coord���t�k � � � ktn�� �

From de�nition �� an event e is enabled by the union of the events that enable it
in one OLES plus events are are classi�ed as writing and whose labels are equal to the

http://www.robert-tolksdorf.de

g p g g

associated write event for e� For a coordination structure with respect to WB and wB�
this means that an event e� from E� enables an event e� if its label is in f�add� n jn � Ng
and the label of e is �remove� n � As the coordination structure contains only events
labeled �remove� n or �add� n � the enabling relation in the coordination structure is
X � e��fejl�e � f�add� n jn � Ng
 l�e # w��remove� n g � X� Therefore l�e� #
�remove� n and as the events involved in ��add�� following de�nition � are labeled uniquely�
there is only one event ful�lling this condition� Therefore� the enabling relation equals
to the one de�ned for B�

With these de�nitions� we are ready to use terms of operations on the Bag�Machine
to de�ne operations of coordination languages that base on multisets� We will do so
in section ��� for a subset of Linda but �rst an interface for the embeddings with
computation languages has to be de�ned�

��� Embedding coordination and computation lan�

guages

Coordination languages focus on coordination of agents whereas computation languages
are intended for the expression of the actual work the agents perform� The use of a
coordination language requires an embedding with a computation languages� Specifying
a coordination language has to take this into account by being generic towards one
or more computation languages� In the event structure above� we abstracted from
all computation by the local�operation� However� for the de�nition of a coordination
language� we have to give more details�

In this section we specify the minimal interface that is needed for an embedding�
It includes the speci�cation of types and values of a language� an abstraction from
expressions and their evaluation and the de�nition of mappings between types and values
of di�erent languages� The latter is necessary as the abstraction from programming
languages in our coordination approach implies the possibility of the use of multiple
computation languages for agents� Communication amongst them requires the mapping
of their types and values�

We can assume that a computation language has some type system that gives a
structure to the set of values on which computations can be performed� For the issue of
coordination� the sorts Type and Value are of interest� as typed values are communicated�
They are captured in the signature typesystem below� The notations we use here match
those de�ned in �Ehrig and Mahr� ���� Also� de�nitions of some basic types such as Nat
or Bool can be found there�

Throughout this chapter we use this notation to de�ne signatures and data types�
The equation we give do� however� not de�ne mathematically sound semantics for the
data types introduced� It is our intention � as stated in the introduction to this chapter �
to bridge the gap between the informal description of Laura and implementations of the
system by formalizing the most important components of it� Thus the equations given
in the following are requirements that an implementation of Laura has to ful�ll� We
do not intend to de�ne a �Laura�calculus� which can be used for theoretical insights�

http://www.robert-tolksdorf.de

g p g g

As put above� we expect agents to be written in multiple languages� which makes it
necessary to have mappings amongst values and types from di�erent type systems� In
order to avoid name�con�icts� external de�nes a renaming of a typesystem�

typesystem � Bool �
sorts
Type� Value

operations
isof
 Value � Type � Bool

external�ts� �
ts renamed by
ExtType for Type
ExtValue for Value
extisof for isof

Figure ���	 A signature for a type system and its renaming

We can understand computation as the evaluation of expressions resulting in some val�
ues� The complexity of expressions depends on the computation language � it can be an
arithmetic expression� a procedure expression or a complete program� We are not inter�
ested in the details of an evaluation� however� we want to formulate that an expression
could be evaluated concurrently to other computations�

Furthermore� a computation language can be assumed to have some form of binding�
concept� That is� we assume that an agent has a local environment that stores data
from which values can be referenced within expressions and to which new values can
be written� These assumptions are captured in the signature language below� which is
parameterized with some type system�

language�ts� � ts � Bool �
sorts
Expression� Binding

operations
evaluate
 Expression � Value
spawn
 Expression � Value
isof
 Binding � Type � Bool
bound
 Binding � Value � Bool

Figure ����	 A signature for a computation language

Here� evaluate is the evaluation of some Expression resulting in a value� as is spawn� The
concept of binding involves some form of binding�rules Binding � in a language like C
such a binding�rule is the left hand side of an assignment� A binding�rule expects some
type of value to be bound� isof re�ects this� The e�ect of a binding is captured by the
bound�predicate� being true if a value is bound according to a binding�rule�

Now we are ready to de�ne a data type that constitutes an interface for a computation
language to be embedded with a coordination language� It is de�ned below as embedding�

http://www.robert-tolksdorf.de

p p y g g

embedding�host�ext� �
language�host� � external�ext� �

operations
externalize
 Type � ExtType
externalize
 Value � ExtValue
internalize
 ExtType � Type
internalize
 ExtValue � Value

equations
t � Type� v � Value� u � ExtType� w � ExtValue
internalize�externalize�t�� � t
externalize�internalize�u�� � u
internalize�externalize�v�� � v
externalize�internalize�w�� � w

Figure ����	 A data type for an embedding

embedding is parameterized with two languages� the host�language for the embedding
and some external language� The operations internalize and externalize are mapping
operations between the values and types of the host�languages to those of the external
type system�

We can identify three situations that have di�erent impacts on the outform of these
mappings� Say we want to coordinate agents written in the language C only� then we
need one embedding embedding�C�C� and the mappings are identity functions� If we
have agents written in the languages C� Pascal and ML and chose Pascal�s type� and
value system for the external representations then we have embeddings based on embed�
ding�C�Pascal�� embedding�Pascal�Pascal�� and embedding�ML�Pascal�� where mappings
from C and ML to Pascal have to be provided� Finally� we can have some external value�
and type system� say XDR ��SUNa�� �SUNb� � requiring embeddings embedding�C�XDR��
embedding�Pascal�XDR�� and embedding�ML�XDR�� If for some language such mappings
are impossible� agents written in that language are not suited to be coordinated�

With an embedding and the Bag�Machine operations� we can formulate a speci�cation
of Linda and its embedding in some computation language� This is the topic of the
next section�

��� Example
 Specifying Linda with the Bag�Machine

The speci�cation of Linda with Bag�Machine consists of two data�types� The �rst de�nes
the elements of the tuple�space� tuples and templates� the second the Linda�operations
as terms of Bag�Machine�operations�

Figure ���
 shows the speci�cation of the elements that are used for coordination
with Linda� They are parameterized with some host�language and some external type
system� Linda distinguishes templates and tuples� but uses the same hi�constructor for
both� We specify hi for tuples built from a list of actuals and hi� for templates built

http://www.robert-tolksdorf.de

p p y g g

Linda�elements�host�ext� � embedding�host�ext� � Bool � Nat �
sorts
Tuple� Template� Field� Actual

operations
h i
 Actual�� Tuple
h i�
 Field�� Template
length
 Tuple � IN
length
 Template � IN
�eldn
 Tuple � IN� Field
�eldn
 Template � IN� Field
�eld
 Formal � Field
�eld
 Actual � Field
actual
 Value � Actual
actual
 Expression � Actual
formal
 Type � Formal
formal
 Binding � Formal
tuplebound
 Template � Tuple � Bool
�eldbound
 Field � Field � Bool
match
 Template � Tuple � Bool
match�eld
 Field � Field � Bool

equations
v � Value� tp � Type� e � Expression� b � Binding
t � Tuple� u � Template� f � Field� a� a�� � � � � an � Actual
xv � ExtValue� xt � ExtType

length�ha��� � � �ani� � n
length�hf��� � � �fni�� � n
�eldn�ha��� � � �ai�aj�ak�� � � �ani�j� � �eld�aj�
�eldn�hf��� � � �fi�fj�fk�� � � �fni��j� � fj
actual�v� � externalize�v�
actual�tp� � externalize�tp�
actual�e� � actual�evaluate�e��
formal�b� � formal�typeof�b��

tuplebound�u�t� �
Vlength�t�
i�� �eldbound��eldn�u�i���eldn�t�i��

�eldbound��eld�xv���eld�xv�� � TRUE
�eldbound��eld�formal�tp����eld�xv�� � TRUE
�eldbound��eld�formal�b����eld�actual�xv��� � bound�b�internalize�xv��

match�u�t� �
Vlength�t�
i�� match�eld��eldn�u�i���eldn�t�i��
 �length�u� � length�t��

match�eld��eld�xv���eld�xv�� � TRUE
match�eld��eld�xt���eld�xv�� � TRUE� if extisof�xv�xt�

Figure ���
	 Linda�s tuples as an abstract data type

http://www.robert-tolksdorf.de

p p y g g

from a list of �elds� including formals� length and the projection �eldn yield the length
of a tuple or template or one of their �elds resp�

Actuals are generated from values being mapped to the external representation� as
are formals from a type� An actual can also result from the evaluation of an expression
and a formal can be constructed from a binding�rule by determining a type expected in
the rule�

The communication of a tuple results in the binding of its contents to the environ�
ment of an agent by binding its �elds according to the template� This is re�ected in the
tuplebound and �eldbound predicates� If both �elds are values or if the template��eld
contains only a type� then the values do not have to be bound� If the template �eld
contains a binding�rule� the �eld is bound if the internalized �eld from the tuple is bound
according the binding�rule�

Matching of a template and a tuple requires that all �elds match and that the
template and the tuple are of the same length� This is re�ected by the match and
match�eld predicates� Fields match� if they contain the same value or if the value of the
tuple��eld is of the type requested in the template��eld�

Note that matching is performed on types and values in the external type system�
The externalization takes place with actual and formal� the internalization with �eld�
bound�

The second part of the Linda�speci�cation consists of the de�nition of Linda�s
operations in terms of Bag�Machine� We de�ne Linda�s operations in terms of how
their e�ects are visible to an agent� An agent performing an in observes the e�ect of
having a tuple returned that matches the given template� The agent does not know
about the tuple�space� about other agents acting concurrently on the tuple�space or
about the time when the matched tuple was inserted into the tuple�space�

�Behind the stages� there is a tuple�space and other agents� And there is some
mechanism that ensures a correct behavior of the tuple�space� There is some mechanism
that makes non�deterministic choices on matching tuples� The entity acting behind the
stages is the Bag�Machine whose behavior was de�ned by an event structure in section ���
To agents� the Bag�Machine is visible as an interface of a library� In order to use this
interface in the following� we de�ne it as a signature as follows� while leaving open its
the concrete semantics	

�Behind the stages� there is a tuple�space and other agents� And there is some
mechanism that ensures a correct behavior of the tuple�space� There is some mechanism
that makes non�deterministic choices on matching tuples� The entity acting behind
the stages is the Bag�Machine whose behavior was de�ned by an event structure in
section ���� To use the Bag�Machine in the framework of data types� bag�machine makes
its operations available to agents by the following signature�

bag�machine�Element� �
operations
add
 Element � Element
remove
 Element � Element

http://www.robert-tolksdorf.de

p p y g g

Figure ����	 Signature for agents using the Bag�machine

add performs the add�operation and returns the element unchanged� remove performs
the remove�operation and results in an element that is in the match�relation with the
argument element� The semantics of the application of operations from Bag�machine is
given by translating them into terms of L in section ���� That is ��remove�s 	f	add�t �� #
add�t �local�remove�s � With these� we can de�ne Linda�s operations as they are made
available to agents	

Linda�host�ext� � Linda�elements�host�ext� � bag�machine�Template� �
operations
out
 Tuple � Tuple
eval
 Expression�� Tuple
in
 Template � Tuple
rd
 Template � Tuple

equations
t � Tuple� u � Template
e�� � � � � en � Expression
out�t� � add�t�
eval�ts�t� � out�hspawn�e���� � � �spawn�en�i�
in�u� � t� t�remove�u�� i� tuplebound�u�t�
rd�u� � add�in�u��

Figure ����	 Linda�s operations

�Behind the stages� of Linda� a Bag�Machine performs coordination on a multiset of
templates with appropriate matching� out is the addition of a tuple to the multiset�
eval takes a list of expressions� which are evaluated concurrently into values� As with
the original Linda�literature� we do not specify the order of evaluation and the syn�
chronization of the collection of results� The results are taken to form a tuple which
is added to the multiset via out� In order not to complicate the speci�cation� we can
regard constant values as expressions without restricting eval�

in equals to the removal of an element from the multiset� if the �elds of the tuple
are bound to the local environment of the agent according to the binding rules in the
template� rd can be speci�ed as the combination of in and the subsequential out of the
result� The non�deterministic nature of in and rd allow the temporary withdrawal of
a tuple� as no agent is guaranteed to access a tuple that is �under inspection� by a rd
of another agent�

In the same style as we speci�ed Linda as an example� we de�ne Laura in the next
section�

http://www.robert-tolksdorf.de

p

��
 The semantics of Laura�s operations

We give a formal speci�cation in the style we demonstrated in the previous section for
Linda� First� we start with Laura�s type system de�ned in �gure ����� lauratypes is
the external type system for which an embedding has to provide mappings to and from
types and values�

Lauratypes � Bool�Real �
sorts
Type� Value� Servicetype� Opsig� Opcode� Uid

operations
character
 � Type
string
 � Type
boolean
 � Type
number
 � Type
� �� � � �˜�
 � Value
f� �� � � �˜�g�
 � Value
FALSE� TRUE
 � Value
IR
 � Value
h �� � � � i
 Type�� Type
� �� � � � 	
 Type�� Type
�
 Type � Type � Type

 �
 Opcode � Type � Type � Opsig

� ��
 Opsig�� Servicetype
isof
 Value � Type � Bool

equations
v � Value
v � f� � � � �� ˜�g � isof�v�character�
v � f� � � � �� ˜�g� � isof�v�string�
v � f�FALSE��� TRUE�g � isof�v�boolean�
v � IR � isof�v�number�

Figure ����	 A speci�cation of Laura�s type system

It de�nes the four basic types character� string� boolean and number along with con�
stant symbols that generate values of these types� Typing of the constants is de�ned by
the properties of the isof�relation�

The constructors for records� unions and functions generate complex types� Note
that a mapping of complex types to and from some host language does not necessarily
require the mapping of the complex types found in that language� It su�ces to provide
some syntactical means to construct them�

The sorts Servicetype� Uid and Opcode are used in forms� Their representations are
not �visible� for a host language and need not to be mapped�

http://www.robert-tolksdorf.de

p

The representation of values and types depends on the implementation of the type
system� In the experimental implementation in the next chapter for example� we use
XDR to represent values and character strings to represent service types and opcodes�
Given this external type system� we can specify Laura�s forms as shown in �gure ���

and �gure �����

Laura�forms�host� � embedding�host�Lauratypes� � Bool � Nat �
sorts
Form� UForm

operations
h i
 ServiceType � Opcode � Actual�� Formal�� Form
putform
 Servicetype � Opcode � Actual�� Form
getform
 Servicetype � Opcode � Formal�� Form
serveform
 Servicetype � Formal � Formal�� Form
resultform
 Servicetype � Opcode � Actual�� Form

servicetype
 Form � ServiceType
opcode
 Form � Opcode
args
 Form � Field�

res
 Form � Field�

unique
 Form � UForm
uniquify
 Form � Uid � UForm
strip
 UForm � Form

length
 Field�� IN
�eldn
 Field�� IN� Field
�eld
 Formal � Field
�eld
 Actual � Field
actual
 Value � Actual
actual
 Expression � Actual
actual
 Opcode � Actual
formal
 Type � Formal
formal
 Binding � Formal
formal
 Opcode � Formal

argsbound
 Form � Form � Bool
resbound
 Form � Form � Bool
�eldbound
 Form � Form � Bool

match
 UForm � UForm � Bool
equations
� � � �continued in �gure �
�
	

Figure ���
	 Speci�cation of Laura�s forms �part �

http://www.robert-tolksdorf.de

p

Laura�forms�host� � embedding�host�Lauratypes� � Bool � Nat �
sorts

Form� UForm
operations

� � � 	 �continued from �gure �����
equations

s� t � Servicetype� o� p � Opcode� a� b � Actual�� q� r � Formal�

v � Value� tp � Type� bi � Binding� xv � ExtValue
f� g � Form� u�w � Uid� uf � UForm
putform�s�o�a� � hs�o�a�i
getform�s�o�r� � hs�o��ri
serveform�s�formal�o��r� � hs�formal�o��r�i
resultform�s�o�a� � hs�o��ai

servicetype�hs�o�a�ri� � s
opcode�hs�o�a�ri� � t
args�hs�o�a�ri� � a
res�hs�o�a�ri� � r

strip�uniquify�f�u�� � u

length�a��� � � �an� � n

eldn�a��� � � �ai�aj�ak�� � � �an�j� �
eld�aj�

actual�v� � externalize�v�
actual�tp� � externalize�tp�
formal�bi� � formal�typeof�bi��

argsbound�f�g� �
Vlength�args�g��

i	�
eldbound�
eldn�args�f��i��
eldn�args�g��i��

resbound�f�g� �
Vlength�res�g��

i	�
eldbound�
eldn�res�f��i��
eldn�res�g��i��

eldbound�
eld�xv��
eld�xv�� � TRUE

eldbound�
eld�formal�tp���
eld�xv�� � TRUE

eldbound�
eld�formal�b���
eld�actual�xv��� � bound�b�internalize�xv��

match�unique�getform�s�o�r���unique�getform�t�p�q��� � FALSE
match�unique�getform�s�o�r���unique�putform�t�p�b��� � FALSE
match�unique�getform�s�o�r���unique�serveform�t�p�q��� � FALSE
match�uniquify�getform�s�o�r��u��uniquify�resultform�t�p�b��u�� � TRUE
match�unique�putform�s�o�a���unique�putform�t�p�b��� � FALSE
match�unique�putform�s�o�a���unique�resultform�t�p�b��� � FALSE
match�unique�putform�s�o�a���unique�serveform�t�p�q��� � TRUE� i� t��s
match�unique�serveform�s�o�r���unique�serveform�t�p�q��� � FALSE
match�unique�serveform�s�o�r���unique�resultform�t�p�b��� � FALSE
match�unique�resultform�s�o�a���unique�resultform�t�p�b��� � FALSE
match�u�w� � match�w�u�

Figure ����	 Speci�cation of Laura�s forms �part

A Form contains four major parts	 a Servicetype indicating the service requested or
o�ered� an Opcode denoting the operation requested� a list of Actuals as argument values
and a list of Formals as placeholder for the results�

There are four speci�c kinds of forms� A service�put form is generated by putform
with the placeholder for results omitted� while a service�get form is generated by getform

http://www.robert-tolksdorf.de

g p

with the arguments omitted� Both are used for service � a service�put form to put
the service�request into the service�space� a service�get form to get the results from the
service�space�

A serve�form generated by serveform is used for serve where only placeholder for
the arguments are used� result requires a result�form generated by resultform� With
projections servicetype� opcode� args and res the four components of a Form can be
accessed�

The form�transformations described above transform a Form into a unique form of
sort UForm with unique and uniquify� A unique form is transformed into a Form by strip�

Similar to the speci�cation of Linda above� length� �eldn� �eld� actual and formal
specify how lists of �elds are constructed and accessed� The communication aspect
is modeled by the predicates argsbound and resbound� They hold� if the values from
an argument� or result�list of a form are bound to the local environment of an agent
according to the binding�rules found in a second form� Note� that the externalization
and internalization of �elds is again captured with actual and �eldbound�

Finally� the match�predicate is de�ned for unique forms� Given the four kinds of
forms� only the pairs service�put�serve and service�get�result can match�

A service�put form matches a serve�form� if the o�ered servicetype is a subtype of
the one requested� This subtype relation is to be inferred from the semantics of the
two service interfaces given in �gure ��� and the equivalence� and subtyping�rules for
servicetypes in �gures ��� and ��
�

A unique result�form and a unique service�get form match� if they contain the
same unique identi�er� In both cases� we assume that the embedding ensures that
the argument� and result�lists contain values and placeholder that are typed consistent
with the typing of the requested operation�

With the speci�cation of the forms� we can formalize Laura�s operations as shown
in �gure ����� Laura is parameterized with some host�language and makes use of a
bag�machine that operates on a multiset of unique forms�

The e�ect of service observable for an agent is that of taking a form with a service
request and �lling out the results� It is achieved by adding a unique form via service�put
to the service�space with add and by receiving it via service�get from there� The retrieval
with remove has the side e�ect of binding the result�values to the environment of the
agent�

serve takes a service�o�er form and retrieves a matching put�form with remove� As a
side�e�ect� the arguments and the code of the selected operation are bound to the local
environment of the agent� serve returns a unique form� as the corresponding result
has to use the same unique identi�er� result� �nally� puts a unique result�form into the
service�space with add�

��� Bibliographic remarks

Linda has longly su�ered from the lack of a formal de�nition of its semantics� Im�
plementations had � for example � to choose a speci�c semantics for eval� Given an
operation eval(f(a), g(b))� it was unclear� if the active �elds were to be evaluated

http://www.robert-tolksdorf.de

g p

Laura�host� � Laura�forms�host� � bag�machine�UForm� �
operations
service
 Form � Form
service�put
 Form � Uid � UForm
service�get
 UForm � Form
serve
 Form � UForm
result
 UForm � Form

equations
f � Form� u� v � UForm
service�f� � service�get�service�put�unique�f���
service�put�u� � add�u�
service�get�u� � v� v�strip�remove�u��� i� resbound�strip�v��u�
serve�f� � v� v�remove�unique�f��� i� argsbound�strip�v��u�

�eldbound�opcode�strip�v���opcode�strip�u���
result�u� � strip�add�u��

Figure ����	 Laura�s operations

concurrently or sequentially from left to right� Some implementations restrict eval to
contain only one expression and constants in the other �elds� Furthermore� the question
of the environment in which these evaluations should take place� was left open� Both
procedures in the example could have side e�ect � do they share variables�

The e�ects that can be caused by this unclear semantics cumulate with another omis�
sion	 What sort of expressions can be used in active tuple��elds� If tuple�space opera�
tions can be executed during their evaluation and if in our example� f(a) contains a se�
quence � � �out(a);in(?b:int)� � � and g(b) contains � � �in(?a:int);out(b);b=b+1� � � �
then the evaluation either locks for any sequential evaluation of the �elds or leads to a
non�deterministic result for b if the environment is shared under a concurrent evaluation�

After the informal de�nitions in the referenced papers and in �Narem Jr�� ���� �Ja�
gannathan� ���� �Jagannathan� ��� gave a �rst formal de�nition by the Yale�group� The
papers de�ne an operational semantics by a set of rules for term�rewriting� The work
also includes semantics for multiple tuple�space and a formal de�nition for viewing tuples
being ordered under a subtype relation�

A thorough investigation in formal aspects of Linda�speci�cation can be found in
�Ciancarini and Jensen et al� �
�� Operational semantics are given as an SOS by transi�
tion rules� by a translation of Linda into CCS without and with value�passing� Petri�nets
and as a Chemical Abstract Machine �see below � A more abstract semantics is given
as a testing equivalence�

With the exception of Petri�nets and the CHAM� the speci�cations are based on an
interleaving of transitions� For Petri�nets the authors discuss the problems of combining
larger nets from small ones and the lack of expressibility of hierarchies� e�g� those imposed
by multiple tuple�spaces� �De Nicola and Pugliese� ��� reports on an observational
semantics�

http://www.robert-tolksdorf.de

g p

A speci�cation of a Linda�variant can be found in �Hasselbring� �
�� �Hasselbring�
��a� using the set�based speci�cation language Z� As Z knows no processes� an inter�
leaving model is incorporated in the speci�cation� The work is very detailed and de�nes
for example� how waiting tuples are searched for a match when an out is performed�

On a similar level of detail� �Jensen and Riksted� ��� give an algebraic speci�cation
for Linda and also discuss the consequences of assuming Linda�operations as atomic
and using an interleaving model of processes�

�Chiba and Kato et al� ��� investigate on weak consistency constraints applicable to
tuple�space operations in order to optimize protocols for distributed implementation�
They de�ne consistent tuple�space histories in which � an out has to precede an in
or rd that operates on the generated tuple�
 an in is never followed by an rd on the
same tuple and � two in�s never operate on the same tuple� Following their intent�
they use these condition for the selection of feasible protocols� They do not� however�
formally investigate in the notion of the �same tuple� as we do by �instances��

The issue of abstract data types including non�deterministic operations is discussed�
for example� in �Subrahmanyam� ���� Our Bag�Machine contains such an operation�
namely remove� It is nondeterministic as its outcome depends on the availability of
elements and on the nondeterministic choice of a matching element to remove�

The referenced work allows nondeterministic operations in an abstract data type by
de�ning a characteristic predicate on the operation� The predicate� given an argument
list and a value tells if the operation can evaluate to the given value� Using this de�
terministic predicate� Subrahmanyam develops a notion of equivalence of instances of a
type containing nondeterministic operations� For our nondeterministic Bag�Machine� the
characteristic predicate can easily be derived from the matching relation	 Premove�e�f
��e� f � match for all elements e and f� �Matthews� ��� adopts the work of Sub�
rahmanyam and discusses the translation of a nondeterministic data type to a CCS
speci�cation�

Event structures have been used to give true concurrent semantics to TCSP in
�Loogen and Goltz� ��� and �Baier and Majster�Cederbaum� ��� involving operators
on event structures similar to ours�

��structures were introduced in �Mahr and Str�ater et al� ��� together with a �rst
order ��logic to build ��formula with which one can speak about objects in ��structures�
�Str�ater� �
� introduces a logic on ��structures with a total truth predicate and a de�
tailed investigation in self�reference� �Pooyan� �
� uses ��structures to construct semantic
models for the ��calculus� �Mahr� ��� proposes a uniform framework for disciplines of
declarations and types� It distinguishes a denotational view in which ��structures are
introduced as semantic models and a constructive view using judgements and rules�

http://www.robert-tolksdorf.de

Chapter �

An experimental implementation of

Laura

T
o demonstrate our approach in practice and to prove implementability� we imple�
mented an experimental Laura system� In this chapter we outline the structure

of our implementation�
This Laura implementation allows it to perform experiments with our approach

in a UNIX�environment� It uses a communication infrastructure provided by the ISIS�
toolkit ��Birman and Schiper et al� ���� �Birman� ���� �Birman and Cooper et al� ��� �
Two embeddings are provided� one for the programming language C and one for the
script language of csh� A precompiler exists for these embeddings� External type
systems are provided by ISIS and by the external data representation XDR by Sun
��SUNa�� �SUNb� �

Being an experimental prototype� the implementation has several restrictions com�
pared to what we de�ned in the previous chapter� Some of these are dictated by the
accessibility of hardware� some by available time�resources and some restrictions stem
from the focus of our work�
Our prototype consists of the following components	

� A precompiler that translates programs containing embedded Laura�operations
and �de�nitions into valid programs of the host languages� The precompiler trans�
lates programs written in C�Laura and scripts in csh�Laura�

� A library that provides functions for the local communications of agents with
the bag�machine� For csh�Laura the library functions are provided by separate
programs�

�	

http://www.robert-tolksdorf.de

g

� An implementation of the Bag�Machine that is instantiated with Laura�s forms
and Laura�s matching function�

� An infrastructure for the distributed communication amongst Bag�Machines�

� Some utility programs for analysis and monitoring�

In the following we describe the components as they are implemented for the experi�
mental prototype�

��� A C�Embedding
 C�Laura

We chose the language C as a host language for an embedding of Laura� C is a typical
representative for a strongly typed imperative programming language� Its wide�spread
use makes it an attractive candidate� The concrete syntax of the embedding is de�ned
in �gure
���� We will refer to this embedding as �C�Laura� in the following�

Service�Type 		# /*SERVICETYPE Name Service�Type�Declaration
SERVICETYPE*/

Service�Call 		# /*SERVICE Name (Operation�Binding). SERVICE*/

Serve�Call 		# /*SERVE Name Opcode�Var (Operation�Bindings). SERVE*/

Result�Call 		# /*RESULT Name Opcode�Var (Operation�Bindings). RESULT*/

Operation�Bindings 		# Operation�Binding f ; Operation�Binding g

Operation�Binding 		# Operation�Name : Bindings -� Bindings

Bindings 		# Variable�Name j Bindings f * Bindings g j
< Bindings f , Bindings g > j [Bindings f , Bindings g]

Figure
��	 Concrete syntax of the C�Laura embedding

The syntax of the embedding uses C comments to embed Laura�s operations� Thus
we are free to use our own syntax and do not have to align it to C�syntax� An example for
a C�Laura�program text can be found in �gure
��� Moreover� C�Laura�programs can
be compiled for testing purposes by a normal compiler as the coordination�operations
then are ignored�

The binding lists de�ne from which program variables the argument values are to be
read and to which variables result values should be bound� The mappings from Laura�s
type system to and from that of C are de�ned as follows	

�In the concrete syntax we use a typewriter�font for terminals�

http://www.robert-tolksdorf.de

g

Laura C
boolean � int
number � double
number � float
number � long
number � int
character � char
string � char[]

Two things are worth mentioning� First� C does not have a type boolean� however it is
usually implemented as int� Whenever a boolean can be expected from the service
interface type� we map an integer� Second� all numerical types are mapped to a number�
but number is mapped to double only� In a second stage of mapping� the double
then is mapped to the type of the numerical variable as it is assigned� This may lead to
range�violations and is not checked by the prototypical embedding� Formally� C�Laura
is an implementation of the embedding Laura�C�XDR��

��� A csh�embedding
 csh�Laura

As a second embedding� we implemented an embedding called csh�Laura for use with
the UNIX�shell csh� With csh�Laura we demonstrate the following aspects	

� Use of multiple programming languages� C as a compiled programming
language and csh as a script�language are host�languages for Laura that have
a very di�erent purposes� While C is a universal programming language� csh�
scripts are rather control oriented to automize jobs on a high level� The typing
systems di�er radically� as csh�variables are untyped� Moreover� whereas C is
usually compiled� csh�scripts are interpreted�

� Integration of existing components� The intention of writing a csh�script
mainly is to automize the invocation of programs� Thus� with csh�Laura it
is easy to integrate applications in an open environment� The script provides
a �capsule� that on one side performs coordination by Laura�operations and
on the other side computation by calling programs with appropriate handling of
arguments and results�

The syntax of the csh�Laura embedding is similar to that of C�Laura � it is shown in
�gure
�
� In contrast to C�Laura� scripts cannot be executed without preprocessing�
which is caused by the csh�syntax that does not know grouped comments� To illustrate
the usage of a service with csh�Laura� �gure
�� shows the usage of the booking�service�

The necessary mappings to Laura�s type system cannot be made speci�c for the
csh embedding� as the host language has no type system in this case� Thus any variable
can be used for any value of any of Laura�s types and vice versa� Formally� csh�Laura
is an implementation of the embedding Laura�csh�XDR��

http://www.robert-tolksdorf.de

p p

Service�Type 		# #SERVICETYPE# Name Service�Type�Declaration
#SERVICETYPE#

Service�Call 		# #SERVICE# Name (Operation�Binding). #SERVICE#

Serve�Call 		# #SERVE# Name Opcode�Var (Operation�Bindings). #SERVE#

Result�Call 		# #RESULT# Name Opcode�Var (Operation�Bindings). #RESULT#

Operation�Bindings 		# Operation�Binding f ; Operation�Binding g

Operation�Binding 		# Operation�Name : Bindings -� Bindings

Bindings 		# Variable�Name j Bindings f * Bindings g j
< Bindings f , Bindings g > j [Bindings f , Bindings g]

Figure
�
	 Concrete syntax of the csh�Laura embedding

Laura csh
boolean � variable
number � variable
character � variable
string � variable

��� The STL�precompiler

For the embeddings we use a precompiler approach� The precompiler stl takes a source
�le with the embedded Laura operations and generates a translated program that can
be compiled by the C�compiler or executed by csh� The precompiler has to perform
four major translations	

� For a SERVICETYPE de�nition	

� Flatten the type de�nition by expanding the types de�ned in the where�
part� By doing so� all names in argument� and result�lists are forgotten� The
purpose of the where�part is just to introduce names for convenience� They
are not used by Laura�s type system�

� Generate a type de�nition in an internal representation used by the matching�
routine and emit appropriate de�nitions for the interface types and the op�
eration numbers�

�� For a SERVICE operation	

� Emit statements that copy values from variables according to the binding list
into an argument list for a form�

http://www.robert-tolksdorf.de

p p

Example agent that uses a travel-agency service

#SERVICETYPE# travel_b
(getflightticket: ccnumber * date * dest -> ack * price;
getbusticket : ccnumber * date * dest -> ack * price * line)
where
ccnumber = string;
date = <day,month,year>;
day = number;
month = number;
year = number;
dest = string;
ack = boolean;
line = string;
price = <number,number>.
#SERVICETYPE#

set cc = "123456"
set theday = 10
set themonth = 3
set theyear = 1994
set dest = "New York"

#SERVICE# travel_b
(getbusticket : cc * <theday,themonth,theyear> * dest ->

ack * <dollar,cent> * line;).
#SERVICE#

echo $ack $dollar $cent $line

Figure
��	 Service usage in csh�Laura

� Emit a service�call to the Laura�library�

� Emit statements that copy values to variables according to the binding list
from a result list from a form�

�� For a SERVE operation	

� Emit a serve�call to the Laura�library�

� Emit statements that copy values to variables according to the binding list
from a result list from a form�

�� For a RESULT operation	

http://www.robert-tolksdorf.de

y

� Emit statements that copy values from variables according to the binding list
into an argument list for a form�

� Emit a result�call to the Laura�library�

For the csh�embedding the calls to the library are replaced with calls to stand�alone
programs with the argument list as program parameters� An example of the translation
is illustrated in �gure
�� for a C�Laura�program� The emitted statements are macros
that are expanded during the compilation�

The precompiler performs scanning and parsing using a scanner generated by flex
��Paxson� �
� and a parser generated by bison ��Donnelly and Stallman� �
� � It
does not perform any checking on the types of variables used in the bindings� This
prototypical behavior would have to be replaced by a modi�ed C�compiler for C�Laura�

��� The Laura�library

Any agent in C�Laura is linked with the Laura�library� for csh�Laura�scripts three
programs o�er the library�functionality� For each embedding some form of the Laura�
library has to be provided� as the conversion to and from the external data representation
is language dependent� The library performs the following tasks	

� Construction of forms from argument lists� This includes the proper setup of a data
structure� the management of unique identi�ers for forms and the construction of
command�forms to be communicated to the Bag�Machine�

� Communication of forms to and from the Bag�Machine� This communication is per�
formed in the prototype with UNIX�sockets� Performing an add�operation means
to deliver a command�form via a de�ned socket o�ered by the Bag�Machine� A
remove involves the installation of a socket via which a matched form is returned
and the transfer of its address to the Bag�Machine�

� The conversion of data contained in argument� and result�lists to the external data
representation for Laura�s types� This conversion is done by using the external
data representation XDR ��SUNb�� �SUNa� and the associated operations� This
choice also de�nes the implementation of Laura�s type system for agents working
on one machine� It is necessary to introduce an external representation on one
machine as agents can be programmed in di�erent programming languages�

Figure
�� illustrates how a set of agents running on one machine communicate with the
Bag�Machine�

��� The Bag�Machine instance

In ��
 we de�ned the Bag�Machine and its behavior in a way that abstracts from forms
and Laura�s matching� The experimental prototype uses an instantiation of the Bag�
Machine and provides the de�nition of forms and a function that performs the matching
and instantiation of forms�

http://www.robert-tolksdorf.de

g

#include "laura.h"
...
#define getflightticket 0
#define getbusticket 1
#define ST travel b "getflightticketS<NNN>S-B<NN>getbusticketS<NNN>S-B<NN>S"
...
PREPARE AR;
START BUILD ARGS;
MAP TO ARGS((cc));
MAP TO ARGN((thedate.day));
MAP TO ARGN((thedate.month));
MAP TO ARGN((thedate.year));
MAP TO ARGS((dest));
END BUILD ARGS;
CALL SERVICE(ST travel b,getbusticket);
START READ RES;
MAP FROM RESB((ack));
MAP FROM RESN((dollar));
MAP FROM RESN((cent));
MAP FROM RESS((line));
END READ RES;
FINISH AR;
...

(getflightticket: ccnumber * date * dest -> ack * price;
getbusticket: ccnumber * date * dest -> ack * price * line)

...
/*SERVICETYPE travel b

where
ccnumber= string;
date= <day,month,year>;
day= number;
month= number;
year= number;
dest= string;
ack= boolean;
line= string;
price= <number,number>.
SERVICETYPE*/
...
/*SERVICE travel b

SERVICE*/
...

(getbusticket: cc*<thedate.day,thedate.month,thedate.year>*dest -> ack*<dollar,cent>*line;).

������������������������
�����
�����
����

������������������������
�����
�����
����

STL�preprocessing

Figure
��	 A service�request in C�Laura pre�processed by the STL�compiler

Forms as handled by the Bag�Machine consist of a form�type� a unique identi�er�
a service�type encoding� an operation selector and a list of arguments or results� The
form�type indicates whether the form is a request for a service �service-put � a
request for the service�result �service-get � a service o�er �serve or a service result
�result � The unique�identi�er makes forms unique so that a result can be directed

http://www.robert-tolksdorf.de

g

C�Agent

��������
�������
�������
�������
�������
��������
�������
�������
�������
��������
��������
�������
��������
������ ������������
��������������������������

���
�������������������������
�����
������
�� ��������������

��������������
�������������

�������������
�������������

������������
��������������

�������������
�������������

��������������
������������

�������������
��������������

��������� ��������������������������������������

���
��������

����

���
��������������������������������������

����������������������������
�����������������������������

������������������������������
�����������������������������

���������������������������
�����������������������������

������������������������������
������������������
������������
��������������������������

���

������������������������������
��������

�������
�������
�������
�������
�������
�������
��������
�������
�������
�������
�������
��������
�������
����

�����
�����
������
����������������������

��������������������������������������

������������������
�������������������

�

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Laura�Bag�Machine

Pascal�Laura�Lib

Pascal�Agent

csh�Laura�Lib

csh�Agent
C�Agent

C�Laura�Lib

C�Laura�Lib

Figure
��	 Agents communicating locally on one machine

to the agent that requested a service� Unique identi�ers can be easily generated from
the process number of the agent and a counter held in the library�

The service�type encoding is generated by the precompiler and can be matched faster
than the representation in the STL�grammar� Argument� and result�lists consist of pairs
of a code for a Laura�s type and a value in the external data representation�

The matching takes advantage of the form�types� A test for the subtype�relation on
service�type encodings is performed only when matching service-put� and serve�
forms� For the case of service-get� and result�forms only the unique identi�ers
are tested for equivalence� All other combinations of form�types match in no case�

The test for subtype�relation on service�types works on the encoding of the service�
type according to the subtyping�rules de�ned in section ����
� As the order of �elds can
be rearranged� this function also keeps track of necessary re�orderings in argument� or
result�lists in form of a �copylist�� When instantiating the values of a matched form�
the copylist is taken into account�

The Bag�Machine�s implementations of add and remove are independent of the out�
form of elements and the matching�function� For our prototype� the Bag�Machine uses
two pools of elements� the add�pool and the remove�pool� Elements that �wait� for a
matching element are stored in the remove�pool together with information where the
matching element should be delivered� Elements not yet removed are stored in the
add�pool� The pools are organized as hashed lists that are accessible via some identi�er�
Elements in the add�pool are hashed by some unique identi�er� those of the remove�pool
by the information about the agent a matching element should be returned to�

When an add is performed� the elements in the remove�pool are searched sequentially�
if the new element matches some �waiting� element� If so� the added element is delivered�
thus completing a remove� If no match is found� the element is entered to the add�pool�

http://www.robert-tolksdorf.de

g

When performing a remove� the add�pool is searched sequentially for a matching
element� If none is found� the element passed to remove is entered to the remove�
pool� If the Bag�Machine is distributed� distributed searches for matching elements are
performed prior to the insertion to the pools�

The approach we use has two important characteristics� First� the selection of match�
ing elements is fair as the �oldest� elements are searched �rst� Second� a local search is
performed prior to a distributed search�

The Bag�Machine�implementation can be optimized in two ways� First� a function
can be de�ned for elements that return a characteristic part of the element� This then
is used for a hashing function that points to a subpool of elements� By introducing
multiple add� and remove�lists� the length of the searches would be shortened� Second�
the Bag�Machine should take advantage of the independencies de�ned in ��
 by using
light�weight threads that perform add� and remove�operations concurrently� For the
experimental implementation this is partially done as local and distributed operations
are performed using a threads�package�

��� A distributed Bag�Machine

The Bag�Machine implements operations that work on a shared collection of element�
For the case of a centralized implementation on one machine� two pools of elements are
held and operations on them su�ce for the implementation�

This scheme could be extended to a na�.ve distributed implementation with two sorts
of Bag�Machines	 One central Bag�Machine on a single machine that holds the complete
pools of elements and a number of proxy�Bag�Machines that simply forward add� and
remove�operations to the central Bag�Machine� Such a scheme would lead to a bottleneck
and would introduce a sequentialization of all distributed accesses�

Two other implementation schemes could be chosen	 One in which all added ele�
ments are replicated on all machines and one in which no elements are replicated� For
the �rst scheme� the costs for maintaining consistency rise with the number of nodes� as
the replicas have also to be removed consistently� The second scheme involves a com�
munication overhead� as any distributed handling of elements � i�e� when a matching
element is not found in the local search � involves a request for all other nodes to start
a search and a positive or negative answer�

In order to �nd a compromise between these cost�extremes� we chose a replication
scheme similar to the one originally proposed for the S�NET Linda�implementation� The
idea is to replicate elements only partially on subsets of all nodes� Within this subset�
the search for an element can be performed locally� In contrast to a full replication�
the costs for removing a replica decrease� In order to �nd an element from all subsets�
only one node per subset has to be asked for a matching element� This decreases the
communication costs�

The distribution scheme is as follows� Let N be the set of nodes that participate
in the system� Subsets of nodes can form logical busses meaning that they have the
availability to send and receive broadcasted messages to and from the nodes of this
subset� There is a set of logical busses A # �A�� � � � � An � called add�busses and a set of

http://www.robert-tolksdorf.de

g

logical busses R # �R�� � � � � Rn � called remove�busses� A node from N is a member of
exactly one add� and one remove�bus� so that

Tk
i��Ai # ���

Tk
i��Ri # ���

Sk
i��Ai # N

and
Sk
i��Ri # N � Add� and remove�busses are organized so that they form a grid in

which an add�bus intersects all remove�busses and vice versa�

Given such an organization� the compromised replication scheme can be implemented
by replicating an element that is added at some node over the add�bus which the node
is part of and by trying to remove an element from the nodes of the remove�bus� As the
remove�bus intersects all add�busses� the union of the replicas held by the nodes therein
equals to the union of all elements that have been added in the system� We use this
approach in our experimental prototype�

Moreover the organization has the advantage to localize the e�ect of an add � all add
operations on distinct add�busses are completely independent� Also� searches on distinct
remove�busses require no synchronization prior to the removal of a replica� Doing so
takes advantage of the independencies formally de�ned in the previous chapter�

A request for a remove on a remove�bus does access all elements that are currently in
the system� If the request fails� the remove�operation has to be stored in some remove�
pool from which it is periodically re�issued on the remove�bus� This approach can be
seen as a polling� or active�wait�operation� which is generally considered an unelegant
technique in distributed programming� But� as we are dealing with open distributed
system� in which a dynamic structure is a given fact� such re�issues are necessary in any
case� since they have to be performed at least for new� joining nodes� Moreover� the
delay between an add of an element and its removal in the next re�issuing�cycle can be
accepted under the relaxed e�ciency requirements given�

The organization is depicted in �gure
�
 for an example system� The nodes are
represented by large circles with an element�storage contained in them� The lines rep�
resent logical busses as just described� Elements A� B� C� D and E exist in the system
consisting of nine nodes� There are three add� and three remove�busses� Elements A and
B have been added on nodes of add�bus � and are replicated on all the nodes connected
to the bus� C was added by some node of add�bus � and D and E on add�bus
� The
di�erent layout of the element�stores re�ects the fact that no distributed shared memory
is established� as elements are not referenced by addresses� The local organization of
this storage can be di�erent from node to node�

Now� any node has access to all elements in the system by requests on the remove�
busses� as the union of the element�stores on all nodes of a remove�bus is A� B� C�
D and E in all three cases� The organization also allows for a parallel removal of as
many distinct elements as there are remove�busses� even with Bag�Machines that operate
purely sequentially� The three nodes in add�bus � can remove elements A� C and E for
example without any interference� Also� as many replications can be performed in
parallel without any threading within the bag�machines as there are add�busses�

However this organization always requires n 	 m nodes for n add� and m remove�
busses� thus degenerating the system to one add� or remove�bus for � say � � nodes
which� in turn� corresponds to the organizations with full or no replication as described
above� When distributing a conventional program� the number of nodes involved can be
chosen in advance to the execution� For an open system� however� it changes dynamically
at runtime�

http://www.robert-tolksdorf.de

g

�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
������
������
������
�������
�������
��������
���������

����������
��������������

��
��������������
�����������
��������
��������
�������
�������
�������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��� �����

����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
������
������
������
�������
�������
��������
���������

����������
�������������

��������������������������
��

��������������
����������
���������
��������
�������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
������
������
������
������
������
�������
��������
��������

�����������
������������

���������������������������
��

��������������
����������
���������
��������
��������
�������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
������
�������
�������
��������
���������

����������
��������������

���
�������������
�����������
���������
��������
�������
�������
�������
������
������
������
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
������
������
�������
�������
��������
���������

����������
������������

�������������������
��

�������������
�����������
���������
��������
�������
�������
������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
�������
�������
�������
���������

����������
�������������

������������������������
��

�������������
�����������
���������
�������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
������
�������
�������
��������
���������

����������
�������������

��
�������������
�����������
��������
��������
�������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
������
�������
�������
��������
���������

����������
�������������

��
�������������
�����������
��������
��������
�������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
������
������
������
�������
�������
�������
��������
���������

�����������
��������������

��
��������������
����������
���������
�������
��������
�������
������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

��������������
��������������
���������������

��������������
��������������
��������������
���������������

��������������
��������������
��������������
���������������

��������������
��������������
��������������
���������������

��������������
��������������
��������������
���������������

��������������
��������������
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���

���
���

���

���

��������������������������
��������������������������

���������������������������
���������������������������

���������������������������
��������������������������

���������������������������
���������������������������

���������������������������
���������������������������

���������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����������������������

�����
�����
����
�����
�����
�����
�����
�

����
�����
�����
������������������������

������������������������
�����
�����
����

add�bus

remove�bus �

remove�bus � remove�bus

add�bus �

add�bus �

A

A

B

B

C

C

C

D

D

E

E

D

B

E

A

Figure
�
	 A partial replication scheme

We therefore introduce the notion of pseudo�node and design a protocol that handles
joining and leaving nodes in order to maintain the described organization while meeting
the requirements of open distributed systems�

As described� a node is member of exactly one add� and one remove�bus� This
requirement can be upheld for any number of nodes� if we allow a node to have multiple
identities in the system� We speak of a pseudo�node for a member of a bus that is
simulated by another member on the same add�bus� This simulation is easy to achieve�
as the element�replication on the add�bus requires no overhead and the simulating node
only has to join a second remove�bus and handle remove�operations from there� too�

Above we stated that we use the ISIS�toolkit as a communication�infrastructure for
our experimental prototype� ISIS is a toolkit that uses process groups and broadcasts as
the basic mechanisms to implement communication and synchronization in a distributed
environment� A process group is a collection of processes that can be located on any
node in the ISIS�system� A process can join and leave symbolic named groups� Com�
munication is performed by broadcasts of messages to groups� These messages then are
delivered to all members of the group�

http://www.robert-tolksdorf.de

g

Some characteristics of ISIS are	

� ISIS o�ers various broadcast primitives that follow di�erent consistency constraints�
It can be adjusted� if the delivery of a message is totally ordered with respect to
all broadcasts or to those addressed to a speci�c group� Also� broadcasts can be
delivered in a lazy fashion when their order is uncritical�

� ISIS is fault�tolerant in that it implements a number of logging�mechanisms to
ensure broadcast�consistencies in the light of errors�

� ISIS o�ers a machine�independent data�representation� thus supporting heteroge�
neous process groups�

� A set of basic synchronization primitives is implemented within the ISIS�toolkit�
such as support for locking� Also� some utility�functionalities � such as an auto�
mated state�transfer to agents joining a group � are o�ered�

� A package for non�preemptive lightweight�threads is provided that allows it to
make the handling of received messages and other activities multi�threaded�

The distributed organization we outlined in this section� �ts well on ISIS mechanisms�
We can map the logical busses directly on process�groups� Broadcasts then are messages
sent to a process�group� The fault�tolerance mechanisms ensure that no broadcasts will
be lost� which would be disastrous for our organization� The synchronization mecha�
nisms ease greatly the implementation of the protocols described in the next sections�

In this thesis we are concerned with the coordination of services in open distributed
systems� not with the implementation of a communication infrastructure� But the choice
of a package that provides us with a complete communication infrastructure does not
mean to put aside an important part of such systems� In contrast� this is a natural
approach as the integration of existing components is one of the main goals with open
systems�

At the time of writing� the major computer� and operating�system manufacturers
undertake numerous activities to introduce such a communication infrastructure at a
logical higher level as standard components in future workstation operating systems�
An example for a consortiated e�ort is the Object Management Group�s �OMG Object
Management Architecture� which de�nes a reference architecture for an object�bases
infrastructure ��Soley� ���� �OMG��� � Amongst the implementations of this OMG model
is IBM�s System Object Model ��IBM��� �

Other approaches are� for example� Sun�s Distributed Objects Everywhere �DOE �
which will be based on the technology of the operating system NeXT�Step and be
marketed as OpenStep ��NeX��� �

We can extrapolate these industry�developments to a scenario in which all modern
computing equipment comes with a communication platform on a high logical level� An
open system should make use of these platforms as is should do today with existing
TCP�IP platforms� With these� our choice of the communication infrastructure ISIS
simply re�ects an assumption that is valid for the next versions of major operating
systems�

http://www.robert-tolksdorf.de

g

The distributed organization of the Bag�Machine is dynamic in order to allow joining
and leaving agents at any time� When an agent requests a Bag�Machine on a machine
which has no Bag�Machine running� it is started automatically by a library� The local
Bag�Machine starts up and joins the distributed organization by a protocol which is
described in section
�
�
� The next subsection describes the protocols used in the
distributed Bag�Machine for add and remove�

����� Protocols used for the distributed Bag�Machine

Three protocols are necessary for the distributed execution of add and remove with the
grid�architecture	 the addition and the removal of a replica on the add�bus and the
removal of an element from the remove�bus�

Most simple of them is the protocol for add � it requires one broadcast of the new
element on the add�bus� The broadcasted message is add-replicate(e,r)� where e
is the element to be replicated and r an identi�er unique on the add�bus� The identi�er
can be easily generated from the nodes network address and a counter held in the Bag�
Machine�

In consequence of the receipt of a replica� all nodes search their local remove�pool for
a match� If one is found and a remove of the replica on the add�bus with the protocol
below succeeds� the element is returned to a waiting agent�

Removing a replica involves a two phase protocol� First� a request for a lock of the
replica is broadcasted on the add�bus as lock-replicate(r)� where r is the unique
identi�er of the element� If the element is not currently o�ered for a remove on an
remove�bus by the protocol below� a �ag is set in all replicas preventing the element
from removal� If the lock succeeds� a remove-replicate(r)�message is broadcasted
causing all nodes on the add�bus to delete the element identi�ed by r from the add�pool�

For a remove�operation� the local add�pool is sought for a matching element� If one
is found� an attempt is made to remove the replicas on the add�bus with the protocol
just described� If none is found or if all removals on the add�bus failed� the nodes on
the remove�bus are asked for a matching element� The protocol for the removal of an
element from the remove�bus is described below� where the left column contains the
operations of the node requesting the remove and the right one those of the other nodes
on the remove�bus�

Node requesting the remove Other nodes on the remove�bus

Broadcast a message want(e,id) on the remove�bus� e
is the element for which a match is sought and id a unique
identi�er of the request� It is generated from the machine�
address and a counter�

On receipt of a want(e,id)�message� search the local
add�pool for an element matching e� If one is found� lock
it on the add�bus with lock-replicate(r)�broadcast�
where r is the unique identi�er of the found element on the

http://www.robert-tolksdorf.de

g

addbus� If the lock succeeds� reply with an offer(r)�
message and memorize the o�er in a pool� If no matching
element was found� reply with a dont-have�message�

Collect the o�ers and chose one� Broadcast a send(r,id)�
message� where r is the identi�er of the chosen o�er and
id the request identi�er� If no o�er was made� store the
element in the remove�pool�

On receipt of a send(r,id)�message� check the previ�
ous o�er to the request id� If the request is for the o�er�
answer with it and broadcast a remove-replicate(r)�
message on the add�bus� If no element was o�ered� ignore
the message� Otherwise� broadcast an unlock-replicate(r)�
message for the o�ered element on the add�bus�

Deliver the received matching element to the agent that
performed the remove�

For a system with n remove� and m add�busses� add requires the delivery of n copies
of the element and can lead to n requests for a lock in the worst case and n remove�
messages� The lock�requests� however� can be partially avoided by local tests�

remove leads to a lock�request and n remove�messages in the best case where a local
match is found� In the worst case� however� m copies of the element have to be delivered
with the want�messages� These can lead to n�m lock�requests and n remove�messages�

The asymmetric loads for add and remove can be justi�ed by the nature of the
operations� add is non�blocking and involves nearly no costs� remove is blocking anyway
� for the case of Laura� the blocking lasts at least for the execution of the service�request
� so that a coordination�overhead is acceptable�

Making the reasonable assumption that for Laura a matching form cannot be found
on every remove�bus� the worst case should not occur� This short analysis shown however
that the structuring of remove� and add�busses should be guided by some additional
information� The more �similar� elements are replicated on the same add�bus� the
lower the overhead for the remove�protocol on the remove�bus will be�

The toolkit we chose for our experimental implementation� ISIS� provides several
variants of broadcasts which are associated di�erent costs� Choosing these variants
means to determine the ordering requirements for the delivery of the broadcast messages�
The following table shows them�

http://www.robert-tolksdorf.de

g

Message Ordering required
add-replicate(e,r) Strict ordering as lock-replicate requires consis�

tency of replicas�
lock-replicate(r) Strict ordering as a consistency of locks is required�
remove-replicate(r) Relaxed ordering as replica r has been locked in advance

and is subject to no other operation�
unlock-replicate(r) Relaxed ordering as replica r has been locked in advance

and is subject to no other operation�
want(e,id) Relaxed ordering as the recipients search their local

element�pools which requires no form of consistence and
as there are no fairness�guarantees made� Consistent
locking on an add�bus in the case of an offer�answer
is ensured by the strict ordering of lock-replicate�
messages�

send(r,id) Relaxed ordering as r as well as other o�ers have been
locked on add�busses� However� the message should be
delivered fast not to hold unnecessary locks too long�

A strict ordering here means that all recipients receive broadcasted messages in exactly
the same order� A relaxed order means that the order of reception does not have to
be the same for all recipients� The latter allows the communication infrastructure to
optimize message�delivery�

����� Protocols for joining and leaving nodes

The protocols necessary for joining and leaving nodes ensure the grid�structure which
is required for the above protocols�

An agent started on a machine causes the automatic startup of a local Bag�Machine
which joins the distributed Bag�Machine� It does so by contacting a subset of the nodes
that is known as the reception� The reception is formed by one node from each add�
bus� A node being a �receptionist� has some additional knowledge about the current
organization of add� and remove�busses� Moreover� the receptionist node of an add�bus
is the only node that simulates other nodes� The protocol for a join works as follows	

Node joining Nodes from the reception

Initialize the communication infrastructure and join the set
of nodes�

Broadcast a checkin�message to the reception�

On the receipt of a checkin�message� one member of the
reception � the receptionist � acquires a reception�lock� so
that only one join is being served at a time�

The receptionist broadcasts a offer-location�message
to the reception�

http://www.robert-tolksdorf.de

g

On the receipt of a offer-location�message� a reception�
node checks if it simulates one or more nodes� If this is
the case� it answers with a offering(a,r,w)�message�
where a is the number of its add�bus� r the number of the
remove�bus the simulated node joined and w a weight taken
from the number of simulated nodes� Otherwise reply with
a no-offer�message�

There are three possible reactions of the receptionist	

�� If the receptionist receives offering�messages� it se�
lects one based on the received weights� It answers the
joining node with a join(a,r,n)�message� where a is
the number of the selected add�bus� r the number of the
selected remove�bus and n the address of the reception node
of the add�bus a�

� If the receptionist receives only no-offer�replies� it
can decide to build a new remove�bus� In this case it broad�
casts an enlarge(n)�message to the reception�

On the receipt of an enlarge(n)�message the nodes from
the reception add a simulated node to a new remove�bus
with the number n�

After the acknowledge of the enlarge�message� the recep�
tionist answers to the joining node with a join(a,r,n)�
message� where a is the number of the receptionists add�
bus� r the number of the new remove�bus and n the address
of the receptionist�

�� If the receptionist receives only no-offer�replies� it
can decide to build a new add�bus� It answers the join�
ing node with a join(r,a,0) where r is the number of
remove�busses that have to be joined� a the number of the
new add�bus and � a null�address�

On the receipt of a join(r,a,n)�reply two cases arise	

�� If n is a valid address� join the add�bus a� During this
join� the state of one other node of the bus is transferred�
This transfer includes all elements that have been added
on the add�bus together with unique identi�ers and locking
status� Then� join the remove�bus r� Here� no state has to
be transferred� Finally� tell node n that it can refrain from
simulating the node �a�r �

� If n is a null�address� a new add�bus numbered a is cre�
ated� There is no state to transfer� as no elements have been
added yet� The node then joins remove�bus � and simulates
r� � pseudo�nodes that join the remaining remove�busses�
Finally� the node joins the reception�

http://www.robert-tolksdorf.de

g

Now the node has joined the grid�organization and signals
this by broadcasting a checkin-finish�message to the
reception� causing the receptionist to release the reception�
lock�

Figure
�� shows the evolving structure of the grid as two nodes join� Here� solid bullets
represent real nodes� while hollow bullets stand for simulated nodes� The reception
consists of the members of the remove�bus ��

xx

x x x

x���������������������������
���������������������������

���

�����
�����
�����
�����
�����
����
�����
����
�����
�����
�����
����
�����
�����
�����
�����
���

xx

x x x

x

x
�����
������
���
�����
��� �����

������
���
�����
��

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
����
�����
����
�����
�����
�����
����
�����
�����
�����
�����
���

���

��������������
��������������
��������������
��������������
��������������
��

xx

x x x

x

x
�����
������
���
�����
���x

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
����
�����
����
�����
�����
�����
����
�����
�����
�����
�����
���

���

��������������
��������������
��������������
��������������
��������������
��

�������������������������������������� �����������������
��������������������

� �������������������������������������� �����������������
��������������������

�

� �� � � �

�

�

a

d
�
b
u
s
s
e
s

d

remove�busses remove�busses remove�busses

Figure
��	 The organization evolving by added nodes

In the protocol above the receptionist makes a choice on whether to establish a
new remove�bus or to enlarge the system by a new add�bus� For our experimental
implementation� we try to hold the number of add� and remove�busses in balance� thus
deciding for a new add�bus if there are more remove�busses and vice versa�

For a real system� this decision and the choice of an o�ered location would be guided
by some additional run�time information� If � for example � an add�bus is formed by
a number of nodes located closely and replications occur often� is would not be a good
decision to direct a node at a distant local to join that add�bus�

Agents can leave the system without further restriction due to the uncoupled style of
coordination in the Bag�Machine� Some circumstances can make it necessary or desirable
that a local Bag�Machine is shut down when no agents are active� It does so by leaving
the distributed Bag�Machine� As for the join� protocols are necessary that uphold the
grid�structure of distribution� The protocol for a leaving node is as follows�

Node leaving Reception node on the add�bus

When no elements are o�ered on the remove�bus� a check
is made if the node is member of the reception� This leads
to two cases�

�� If not member of the reception� leave the remove�bus�
Then� broadcast a checkout(r)�message on the add�bus�
where r is the number of the former remove�bus of the
leaving node� Leave the add�bus and terminate�

http://www.robert-tolksdorf.de

g

On receipt of a checkout(r)�message� check if member
of the reception� If so� simulate an additional node that
joins remove�bus r� There is not state to be transferred� as
the node holds a complete replica of the state of the leaving
node�

Node leaving Members of the reception

� If member of the reception and if the last node on the
add�bus� acquire the reception�lock� For each element from
the add�pool� select another member of the reception and
broadcast a checkout-move(a,e)�message� where a is
the address of the selected node and e the element of the
add�pool�

On receipt of a checkout-move(a,e)�message� check if
a is the nodes address� If so� replicate element e on the
add�bus�

Destroy the add�bus� Leave the remove�bus� Broadcast a
checkout-finish(a)�message to the reception� where
a is the number of the add�bus� Release the reception�lock�
leave the reception and terminate�

On receipt of a checkout-finish(a)�message� mark
add�bus a as unused�

a

d
�
b
u
s
s
e
s

d xx

x x

x

x
x x

xx

x

x

x

xx x

x
x xx x

�����
������
���
�����
�� �����

������
���
�����
��� �����

������
���
�����
���������������������

������������������
��

������������������
������������������

��

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���

��������������
��������������
�������������
��������������
��������������
����

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���

��������������
��������������
�������������
��������������
��������������
����

����������������������������
����������������������������

��

��������������
�������������
��������������
�������������
��������������
�������

� �� � � �

�

�

remove�busses remove�busses remove�busses

Figure
��	 The organization evolving by deleting nodes

Figure
�� shows the evolution of a grid when two nodes leave� The removal of a node
from the system should be subject to some administrative decision� If it is known that
no agents will be executed on a machine it can save communication costs to do so� as
remaining elements then are moved to a node which is more likely to remove them� Also�
a physical shutdown of a node requires the logical shutdown of the local Bag�Machine�

The leave of a node has to be delayed� if elements are currently o�ered on the remove�
bus or if the remove�pool is not empty� In the later case� however� some agents still exist
on that node that perform a remove�

http://www.robert-tolksdorf.de

g

In the protocol above� a leaving node that is the last node of an add�bus has to decide
on the destination of the checkout-move�operation� This decision can be based
on additional information on communication�costs or the like� For our experimental
prototype� we distribute elements to all other nodes of the reception in order to take
advantage of parallel replications on the remaining add�busses�

����� Extended Bag�Machine�organizations

The distribution scheme outlined relies on a very uniform organization that is only
relaxed by pseudo�nodes� Such a uniform organization cannot be guaranteed to be
realizable in the light of the heterogeneity and scale of open distributed systems�

It shows� however� that the scheme is not as uniform as it may look� The grid�
organization has two components� the replication scheme on the add�busses and the
access scheme on the remove�busses� The two components are orthogonal to each other�
We demonstrate this by two extended organizations�

xx

x x x

x

x
x x

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���

���������������
��������������
��������������
��������������
��������������
�

x

x
�����
�����
�����
�����
�����
�����
�����
�����
������
������
������
�������
�������
���������

�����������
������������������

��
�����������
���������
��������
�������
������
������
������
������
�����
�����
�����
�����
�����
�����
�����
�

x

x

�����
������
���
�����
�� �����

������
���
�����
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�

��
������������������������� ���

�a� Integrating di
erent topologies

xx

x x x

x

x
x x

����������������������������
���������������������������

��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���

��������������
��������������
���������������

��������������
��������������
�

xx

x x x

x

x
x x

���������������������������
���������������������������

���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���

���������������
��������������
��������������
��������������
��������������
�

x�����
������
���
�����
��� �����

������
���
�����
���

���

������������������������������������
��

���������
����������
���������
����������
���������
����������
���������
���� federator node

�b� Federation

Figure
��	 Extended organizations

Figure
���a shows an extended organization that breaks the uniformity of the add�
busses� It integrates a logical grid�topology and a logical ring�topology by making one
node of the ring a member of all remove�busses of the grid�topology� This is easily
achieved by pseudo�nodes�

A requirement of the grid�organization is that a node of a remove�bus can access
a subset of elements stored in the system� For an add�bus topology� this is achieved
by replication� However� this is not a required organization� If there is some protocol
in the example�ring making all elements available for all ring�nodes� then it su�ces to

http://www.robert-tolksdorf.de

g

integrate one ring�node into the grid� as illustrated� The protocols on the remove�busses
are left unchanged� only that the ring�node does not search its local storage of replicas
but starts some protocol on the ring and makes appropriate o�ers�

Also� the protocols for joining and leaving nodes remain unchanged� as long as the
ring�node is member of the reception and makes no o�ers for unused locations on the
grid and observes the protocol for the addition and removal of remove�busses� The ring�
however� can have its own protocols for leaving or joining nodes�

This example shows that di�erent topologies can co�exist for a distributed Bag�
Machine within the logical grid�organization� It therefore can cope with the hetero�
geneities of open distributed systems�

Two other characteristics of open system have to be re�ected by a distribution
scheme	 They can cover large areas and they cross organizational borders� Figure
���b
shows how these can be dealt with for a distributed Bag�Machine by federation�

Here� two distributed Bag�Machines are connected by a federator�node� It is member
of one Bag�Machine by a simulated add�bus as the ring�node above� Also� it has a
connection to one node of another distributed Bag�Machine that can be at a di�erent
location and belong to a di�erent organization�

The federator serves no local agents but has its purpose solely in connecting to
another Bag�Machine� It is able to answer remove�requests by issuing them on the
remove�bus of its Bag�Machine� Also� it is able to forward requests to a node of the
other Bag�Machine� As any node of a grid is able to satisfy remove�requests� forwarding
a request can access all elements stored in another Bag�Machine�

Such an organization satis�es the requirements we described� First� the connection to
a remove Bag�Machine can and should make usage of dedicated wide�area communication
lines�

Second� federators can be used as �entry�nodes� for Bag�Machines that exist in an
organizational context� Recurring to the example with the traveling system of chapter ��
one can imagine that the �ight�reservation system is coordinated by a distributed Bag�
Machine within the carriers organization and that the banking system used for the
authorization of credit cards with one of bank�

Having de�ned federators at each distributed Bag�Machine allows it to introduce
some form of access�control� It could be de�ned that the bank accepts inquiries from a
travel�agency but none of a �ight�carrier�

In this case� the federator node of the bank simply does ignore elements coming
from the federator of the carrier but handles elements from the travel�agency� Our
distribution scheme does not require additional protocols for the denial of operations�
ignoring them su�ces�

In both extensions of di�erent topologies and of federation� the additional nodes do
not necessarily mean the requirement of an additional machine� Still� these schemes
are only a logical structure that can be implemented on nodes that run another Bag�
Machine�kernel or an extended kernel� However� they impose additional loads and should
be selected carefully by an administrative decision�

http://www.robert-tolksdorf.de

p p yp

��� Experience with the prototype

From the development of the experimental prototype we learned that Laura can be
implemented without further problems� Some experiences list as follows	

� All components turned out to be implementable fast and easy� It showed that
Laura induces a good structure of small functional units�

� It turned out that the embeddings were easy to implement� This is mainly caused
by the focus on coordination and the small interface to the coordination language�

� The components were implementable without being dependent on a speci�c in�
frastructure� It is well possible to use another external type system such as ASN��
or some other communication toolkit�

� csh�Laura turned out to be enabling for the setup of example service�spaces that
use and o�er functionalities which could be integrated by simple scripts�

For demonstration purposes we de�ned some agents that together form an open sys�
tem for �ight�� train� and bustickets as described in chapter �� The agents use the
csh�Laura� and C�Laura�embeddings and simulate a bank� bus� and �ight�carriers�
travel�agencies and a user�agent� Figure
��� on page ��� shows a screen�shot of this
demonstrator�

Here� a service�space has been established on �ve machines� called flp� flp1�
alice� madeira and dorothy� In the lower two windows agents that o�er and
use a travel�agency have been executed� The lower left window show the output of the
agency�agent running on dorothy� the lower right window contains the output of the
user�agent running on madeira�

The three smaller and two larger windows in the upper half of the screen contain
logging messages generated by the Bag�Machine�implementation� The larger ones are
log�windows for the Bag�Machines on dorothy and madeira� They contain entries on
the executed protocols and the messages exchanged as described in this chapter� Also
visible are the internal representation of forms used in coordinating the booking�service�

��
 Bibliographic remarks

The distribution scheme for the Bag�Machine is adopted from the one described and ana�
lyzed in �Carriero and Gelernter� �
�� Besides the the software�implementation described
in this source� it has been realized in hardware for the Linda�machine ��Krishnaswamy
and Ahuja et al� ���� �Ahuja and Carriero et al� ��� �

An analysis of consistency requirements for a distributed implementation of a tuple�
space has been performed in �Chiba and Kato et al� ���� For in on replicated tuple�pools�
it involves a strict protocol with locking� a nonexclusive protocol without locking but
with acknowledgments and a weak protocol consisting of an erase�broadcast only� The
selection of the protocols depends on the in�out�patterns of agents and is adjusted by
the programmer or an optimizing compiler�

http://www.robert-tolksdorf.de

g p

Figure
���	 Screen�shot of some Laura�agents

For the Bag�Machine� the remove�protocol on an add�bus is similar to the strict
protocol� As we cannot make any assumptions on the behavior of agents� the other
protocols provide no alternatives for our implementation�

In �Mattson and Bjornson et al� �
� an alternative for a distributed implementation
is described� Here� elements are not replicated but stored on one machine in a network�
whose location is determined by a hash�function on the element� Given that elements
being in the match�relation have the same result with the hash�function� then only one
node has to be asked for a matching element�

For our purposes� this approach is not feasible� as it depends on a static set of nodes�
Would new nodes be introduced� then the range of the hash�function would have to
be changed� Moreover� the already distributed elements probably have to be moved�
so that the join of a node could lead to a complete reorganization of the distributed
element storage� The same argument applies when nodes are allowed to leave� Given
the potential world wide scale of open distributed systems� such reorganizations will
become impractical and should not be part of an architecture�

http://www.robert-tolksdorf.de

g p

A Linda�like system based on the ISIS toolkit is reported in �Westbrook and Zuck� ���
together with an analysis on the communication� and replication�costs in the presence of
faulty machines� The communication infrastructure P� ��Butler and Lusk� �
� is used
in �Butler and Leveton et al� ��� to implement a Linda system in two �avors� In a shared
memory implementation� agents perform Linda�s operations on a shared tuple storage
whereas in a memory passing implementation� a single process acts as a tuple�space
manager� The PVM�infrastructure ��Beguelin and Dongarra et al� ��� serves as the
implementation platform for a Linda system called Glenda in �Seyfarth and Bickham
et al� ���� All references report on work in progress but support our claim that other
infrastructures than ISIS can be used for a Bag�Machine implementation�

http://www.robert-tolksdorf.de

Chapter �

Outlook and perspectives

I
n this thesis we introduced a model of coordination and discussed the three aspects
of coordination� communication� synchronization and service�usage and �provision�

We studied and proposed three languages� namely Linda� Alice and Laura� which
each put emphasis on one of these aspects� They share the basic concept of the lin�
guistic treatment of coordination separated from computation� Also� they all three use
uncoupled coordination by a shared multiset of some elements as the basic mechanism�
We have shown that the conceptual separation of coordination as well as the chosen
coordination�media are enabling to a solution of the coordination problem in its three
aspects�

We have given a formal prescription of coordination with multisets based on the Bag�
Machine by specifying its behavior and that of agents using it� A formal speci�cation
can be used to verify an implementation and to establish a notion of correctness�

What remains to be performed� is a validation of our approach� i�e� exploring whether
the solutions we proposed here are capable of solving coordination problems as given by
the reality� Such a validation necessarily includes non�formal methods�

For Alice� we did not touch the issue of implementing the language� Some preten�
tious requirements are imposed� Most important� a suitable representation of process�
de�nitions has to be found� On one hand� Alice�processes can be compiled for some
architecture� involving a mixture of Alice�operations and local computation� How�
ever� as process�de�nitions can be communicated in tuple��elds� there has to be some
architecture�independent representation of these de�nitions which cannot be compiled
in advance when multiple architectures are involved� It would have to be evaluated� if
a two�folded representation with executable machine�dependent code and interpretable

��

http://www.robert-tolksdorf.de

machine�independent code is suitable for the implementation of a coordination�assembler
that imposes higher e�ciency requirements�

Also� we only outlined how a simple imperative language can be compiled intoAlice�
agents� It remains to work out the details of further mechanisms found in a real language
and to �nd representations of data�structures in the local�environment of an Alice�
agent�

In the case of Laura� the implementation of a real prototype � instead of an exper�
imental system � has to provide a starting point for a validation of our approach by a
case�study� It would have to pay more attention to e�ciency and had to be validated
against solutions using an ODP�framework or an OMG�like platform� Such a prototype
has to take into account a variety of system�parameters which we neglected for our ex�
periments� Examples are factors such as real�life loads on communication infrastructures
or the integration of preexisting real components�

Two important issues in open systems are not addressed by Laura� quality of ser�
vices and management� Quality of services means that multiple o�ers of the same
service are distinguished by some measure of quality� such as the resolution of a printer
or the expected duration of the service provision� In approaches such as ODP� some
set of service�attributes is de�ned and can be used to formulate quality�requirements
when requesting a service� such as DPIResolution>=300� Selection of a service then
means to �nd appropriatly typed service o�ers and then to chose one according to the
quality requirements� For Laura� such a mechanism can be added by introducing ad�
ditional quality�terms in forms and by extending the matching�rule for forms� However�
this will introduce the naming problem for attributes again� as DPIResolution and
ResoutionInDPI would have to be related�

A second important issue not addressed by Laura is the management of the system�
Management deals with how to cope with performative problems such as balancing the
usage of resources at runtime� For Laura this means to manage the Bag�Machine by
gathering information about � for example � the number of forms stored in the addpool
and by providing management function that allow it � for example � to redistribute
forms to other addbusses if there is an exceptional amount of forms added� Thereby
storage� and communication�loads could be better balanced� Management can also be
supported by additional knowledge about what services will be used and o�ered by an
agent� This information can be passed to the Bag�Machine by initially transmitting
the servicetype de�nitions� We addressed some of these issues in the chapter about
the experimental prototype but still have to establish some management�concept for
Laura�

Given the developments in information technology� multi�media requirements raise
further questions that are not addressed in Laura and not yet answered in other ap�
proaches� An example is how to deal with services that require a stream�like data�ow
such as the transmission of video� or audio�data� Also� we addressed how safety issues
can be implemented in a Laura�system� but still a validation with respect to real�life
requirements of organizational structures in necessary�

Open distributed systems� which provide the context to the main contribution of
this thesis� are a �eld of research that uses the notion of frameworks to provide abstract
models that are able to cope with the enormous complexity induced by the variety of

http://www.robert-tolksdorf.de

issues considered important� Examples are � most prominently � the ODP reference
model� ISO�s quality framework ISO ���� ��ISO� ��� � or � with a broader pretension �
the multi�dimensional /�model ��TRI��� �

We focussed on the issue of coordination which is only one item within such frame�
works� Our approach to coordination in open distributed systems has to be validated
against such frameworks� It remains to be shown how our understanding of coordination
has counterparts in these models� The conceptual separation of coordination and com�
putation we used has to be checked against the �ner�grained separation of interests in
those models� which also has the potential to address the �further issues� we mentioned
above with a clearer view on their role in systems�

Besides of a validation of our approach against broader models� we envisage a ver�
i�cation of out model of coordination against other approaches to coordination which
chose a di�erent coordination�ontology� a di�erent coordination�media and associated
rules� In fact� it remains to show how the ODP� or OMG�approach to coordination in
open distributed systems is an instance of our model� With a theoretic perspective� we
would have to develop formal means to show relations between our Bag�Machine and
formal models of communication and synchronization�

http://www.robert-tolksdorf.de

Chapter 	

Acknowledgments

N
aturally� the work on thesis has been dependent on an organizational infras�
tructure� The institutional context has been provided by the Graduiertenkol�

leg Kommunikationsbasierte Systeme at the Technische Universit�at Berlin� Freie Uni�
versit�at Berlin and the Humboldt Universit�at zu Berlin� The author is indebted to
the professorial members of the Graduiertenkolleg during the past three years� Hart�
mut Ehrig� G�unter Hommel� Klaus�Peter L�ohr� Bernd Mahr� Peter Pepper and Radu
Popescu�Zeletin for establishing this institution� for the educational program within the
Graduiertenkolleg and their ongoing support� Also� I would like to thank the other
fellows being supported within the Graduiertenkolleg� especially Andreas Polze for dis�
cussions on our Ph�D� projects�

The Graduiertenkolleg is supported by the Deutsche Forschungsgemeinschaft DFG
and provided the author with a three year grant� I am thankful for this provision of a
material basis for my research� which also included support for the presentation of my
work at conferences�

My work has been stimulated in the beginning by discussions with the members of the
Projektinitiative Medizin�Informatik �PMI � headed by Horst Hansen who introduced
me to the context of a real�life project of designing and implementing an open system
in a medical environment�

The members of the department Funktionales und Logisches Programmieren pro�
vided me with a pleasurable an pleasing environment to perform my research� Espe�
cially� I would like to thank Dirk Lutzeb�ack for ongoing and valuable discussions on
open systems and ODP�

Professor Peter L�ohr helped to increase the quality of this thesis with detailed com�
ments and corrections�

�

http://www.robert-tolksdorf.de

Finally� and most of all� I would like to express my thanks to my supervisor� professor
Bernd Mahr� for his continuous support which nearly always set me on a �right track�
to follow in my work� for his stimulating and most important advice in structuring
this thesis� and for his con�dence which gave me more than enough room to follow my
research interests in a independent way which I have to doubt to have again in the
future�

http://www.robert-tolksdorf.de

Appendix A

Laura�s subtyping tested by

Alice�agents

E
very implementation of a coordination language such as Laura necessarily in�
volves performing computations such as determining subtype�relations for service�

interfaces� This computation then requires coordination in itself� for example to imple�
ment a concurrent algorithm for subtype�testing�

In chapter � we introduced Alice as a coordination assembler� In this appendix
we demonstrate how Alice can be used to implement Laura�s rules for subtyping of
interfaces� This results in a concurrent algorithm opposed to the sequential C�routines
we use in our experimental prototype�

Let the following service interfaces o�er an operation to purchase a travel�ticket for
families� The �rst gets some information about seating preferences such as a row�number
and information about the number of children an whether a swaddling�desk has to be
available	

family�a�

(familyticket : seating * childinfo -> ack * cashed)
where
seating = <number,character>;
childinfo = <number,boolean>;
ack = boolean;
cashed = <number,number>.

The second requires less data as arguments� Applying Laura�s subtyping�rules shows
that it is a subtype of the �rst�

�

http://www.robert-tolksdorf.de

g

family�b�

(familyticket : seat * children -> ack * cashed)
where
seat = <character>;
childinfo = <number>;
ack = boolean;
cashed = <number,number>.

In order to use Alice for the implementation of a subtype�algorithm� the interfaces
have to be encoded as tuples� If we look at the arguments from family�a� they would be
encoded as hh�number��characteri�h�number��booleanii�

A�� Testing records

In order to test if two such encodings R� and R
 ful�ll the subtype�relation on anony�
mous records� we set up a local agent�space in which the �elds of R� are spread and
agents resulting from a spreading of R
 try to retrieve �elds with in that are in a subtype
relation� If all of them terminate� then for all �elds of R
 a corresponding �eld from R�
exists�

We can distinguish three kinds of tuples resulting from the spreading of a tuple that
represents a records�type	 �� tuples containing one �eld of a simple type� called simple
tuples� �
 tuples containing several �elds of simple types� called �at tuples and ��
tuples that contain �elds of simple types and tuples� called nested tuples� The initial
idea of subtype�testing in Alice explained above can be applied to the �rst two cases�

The corresponding agents are shown in �gure A��� The agent that tests for the
subtype relation for anonymous records� r�subtype� has to be initialized with the two
records encoded in tuples and two processes�de�nitions� According to the result of
the test� one of them will be executed as an agent� using the bool�cond meta�agents�
r�subtype starts the test by executing test�simple in a local agent�space�

r�subtype	 hhfa�b�p�qg��in�c	fhtest�simpleifa�bgg �out�hc�p�qi ii
test�simple	 hhfa�bg��in�c	fhbi�hin�h�Simplei ig �

out�hc�hmatch�simpleifa�bg�htest��atifa�bgi ii
match�simple	 hhfa�bg��in�c	fhai�hin�hbi ig �out�hc��blocki ii
test��at	 hhfa�bg��in�c	f�jbj ��jin�h�Simplei j fbgg �

out�hc�hmatch��atifa�bg�hmatch�nestedifa�bgi ii
match��at	 hhfa�bg��in�c	f�jaj ��jin�hbi j g �out�hc��blocki ii

Figure A��	 Agents for the testing of simple and �at tuples

This agent �rst tests in a local agent�space� if b is a simple tuple with a single �eld
only� If this holds� match�simple is started� otherwise test��at� Note that the test on b
su�ces as then a has to be a simple tuple� too� If it is not� match�simple will fail�

http://www.robert-tolksdorf.de

g

match�simple easily tests the subtype relation for simple tuples by putting the sup�
posed subtype tuple together with an agent that in�s the �eld from the supposed super�
type in a local agent�space� As simple tuples have to be identical� Alice�s matching can
be applied� If the tuples do not match� the meta�agent block is issued which is de�ned
to be never terminating� In this case� the local agent�space of r�subtype results in a hFi�

test��at �rst tests by spreading the tuple b and a number of agents that try to in
a simple tuple� If this holds� match��at tests the subtype relation in a similar way to
match�simple� Again� if a is not a �at tuple� match��at will fail so that the test on b
su�ces�

In match��at� a is spread in a local agent�space together with agents resulting from
spreading b� If all of these agents terminate� then they all found a matching tuple
resulting from the spreading of a� which means that the subtype relation holds�

Testing nested tuples is not that straightforward� The problem is to �nd a com�
bination of �elds from both tuples for which the �elds are in subtype relations� The
Alice�agents in �gure A�
 take the following approach	 All possible combinations are
generated and given to agents that test the subtype relations for pairs of �elds� If one of
them succeeds� at least one combination exists for which the subtype relation for records
holds�

match�nested	 hhfa�bg��in�c	f�jj fag��jin�hi j fbgg �
out�hc�hblow�upifa�bg�blocki �out�hin�hi i ii

blow�up	 hhfa�bg��in�c	f�hija��hin��hijb� ig �
out�hc�hshu0eifa�b�bg�hblow�upifa�hhjbji�hiigi ii

shu0e	 hhfa�b�eg��in�c	fe�hin�hi ig �out�hc��hcombine��rstifa�bgi �
out�hc��hshu0eifa�hjibji�hjbhji�hjiejiigi ii

combine��rst	 hhfa�bg��in�c	fhtest�pairifhhjahji�hhjbhjigg �
out�hc��hcombine�restifhjiajii�hjibjiigi ii

combine�rest	 hhfa�bg��in�c	fa�hin�hi ig �out�hc�hout�hi i�hshu0eifa�b�bgi ii
test�pair	 hhfa�bg��in�c	fb�hin�hi ig �out�hc��hr�subtypeifa�b��blockgi ii

Figure A�
	 Testing nested tuples

match�nested �rst tests in a local agent�space� if the supposed subtype a has at least
as many �elds as the supposed supertype b� If it has� the generation of combinations
can start� First� blow�up extends b with empty �elds until it has the same length as a�
r�subtype emits a second agent that tries to in an empty tuple� This tuple plays the role
of a signal for the detection of a valid combination� If none is possible� this one agent
will block� so that a local agent�space in which r�subtype is executed will evaluate to
hFi�

shu0e generates a set of combinations of the �elds from a and b� It does so by
generating a combine��rst agent for a combination and then emits itself with b rotated
one �eld� e plays the role of a counter��eld	 It is empty� when b has been rotated
completely�

combine��rst takes the �rst �elds from the combination it is initialized with and
tests them in a local agent�space for their subtype�relation with the test�pair agents�

http://www.robert-tolksdorf.de

g p g

If this test succeeds� then the combinations of the remaining �elds have to be tested
by combine�rest� Otherwise the combination cannot be one that proved the subtype
relation of the two nested tuples and no further action is taken�

combine�rest can emit an agent that emits the empty tuple to signal a valid combi�
nations� Otherwise the remaining �elds have to be combined by the shu0e agent� This
indirect recursion of shu0e ensures that all combinations of a and b are tested�

test�pair �rst tests� if b is an empty �eld� If this holds� then this �eld was generated
by blow�up and the �eld from a is one of those added to the supertype� In this case� no
further action has to be taken� Otherwise a r�subtype agent is emitted to test for the
subtype relation of the two �elds that blocks if this test fails�

A�� Testing operation signatures and interfaces

For function types� Laura de�nes a contra�variant subtyping which ensures substi�
tutability of a subtype for its supertype� Let a function type be encoded as hhargument�
typesi�hresult�typeii� The agent o�subtype in �gure A�� tests for the subtype relation
amongst such tuples a and b and emits p or q as agents depending on if the test succeeds�

o�subtype	 hhfa�b�p�qg��in�c	fhr�subtypeifhjiajii�hjibjii��blockg�hr�subtypeifhhjbhji�hhjahji��blockgg �
out�hc�p�qi ii

i�subtype	 hhfa�b�p�qg��in�c	f�jaj ��jhget�opifbgj g �out�hc�p�qi ii
get�op	 hhfag��in�hhjahj�b	�Tuplei �out�ho�subtypeifhjibjii�hjiajii��blockg ii

Figure A��	 Testing operation signatures and interfaces

o�subtype uses a local agent�space to test if arguments and results are in the correct
subtype relations� It does so by �lling it with two appropriately initialized r�subtype
agents� If the arguments or results are not in a subtype�relation� the block�agent is
emitted� in which case the local agent evaluates to hFi�

For service interfaces in Laura consist of names operation signatures� An interface
a is a subtype of an interface b� if for every operation signature from b there is one in
a with the same name and its type is a subtype of the one from b�

In Alice an interface is encoded as a tuple of the form hhoperation name��hoperation
type�ii�� � � � hoperation namen�hoperation typeniii� The agent i�subtype in �gure A��
tests for subtyping amongst such tuples a and b and emits p or q as agents depending
on if the test succeeds�

i�subtype spreads all operation�signatures from a in a local agent�space together
with a set of get�op agents� each initialized with one operation from b� get�op tries to
in an operation with the same name� If there is none� the agent blocks� Otherwise the
operation�signatures can be tested for the subtype relation with the o�subtype agent�
that is initialized to block for the case that the relation does not hold� If all get�op
agents terminate� the local agent�space of i�subtype evaluates to hTi�

http://www.robert-tolksdorf.de

p

A�� Example executions

��
n
hin�hi i�

hshu0eifhh�number��characteri�h�number��booleanii�hh�numberi�h�characterii�hh�numberi�h�characteriig

o
�
��

�

n
hin�hi i� hcombine��rstifhh�number��characteri�h�number��booleanii�hh�numberi�h�characteriig�

hshu0eifhh�number��characteri�h�number��booleanii�hh�characteri�h�numberii�hh�characteriig

o
�
��

��
n
hin�hi i� hcombine�restifhh�number��booleanii�hh�characteriig�

hcombine��rstifhh�number��characteri�h�number��booleanii�hh�characteri�h�numberiig�

hshu0eifhh�number��characteri�h�number��booleanii�hh�numberi�h�characterii�hig

o
�
��

��
n
hin�hi i� hshu0eifhh�number��booleanii�hh�characterii�hh�characteriig�

hcombine�restifhh�number��booleanii�hh�numberiig

o
�
��

��
n
hin�hi i� hcombine��rstifhh�number��booleanii�hh�characteriig�

hshu0eifhh�number��booleanii�hh�characterii�hig

hshu0eifhh�number��booleanii�hh�numberii�hh�numberiig

o
�
��

�

n
hin�hi i� hcombine��rstifhh�number��booleanii�hh�numberiig�

hshu0eifhh�number��booleanii�hh�numberii�hig

o
�
��

��
n
hin�hi i� hcombine�restifhi�hig

o
�
��

��
n
hin�hi i� hout�hi i

o
�
��

��
n
hin�hi i�hi

o
�
��

���
no

Figure A��	 An example of generating the permutations

In this appendix we illustrate an execution of the r�subtype agent from section A���
Figure A�� shows snapshots from the local agent�space of r�subtype that result from
executing match�nested with the tuples a#hh�number��characteri� h�number��booleanii and
b#hh�numberi� h�characterii� The snapshots taken are only one possible execution�

In snapshot �
 combine��rst starts to test the �rst combination hh�number��characterii
from a and hh�numberii� two �at tuples that are in the subtype relation� The resulting

http://www.robert-tolksdorf.de

p

combine�rest �� leads to the combine��rst in �� where the test for subtyping fails� In
�� the combine�rest results from the successful testing of the other permutation of the
�elds from a and b� It out�s the agent in �� that emits the empty signal tuple� In
��� all agents that tested have terminated� including the in�hi �agent that terminated
because one combination re�ected that a�,b holds� The local agent�space of r�subtype
therefore evaluates to hTi�

http://www.robert-tolksdorf.de

Appendix B

Bibliography

�Agha and Callsen� �
� Gul Agha and Christian J� Callsen� ActorSpaces	 An Open
Distributed Programming Paradigm� Technical Report UIUCDCS�R��
���

�
University of Illinois at Urbana�Champaign� ���
�

�Agha and Callsen� ��� G� Agha and C� Callsen� ActorSpaces	 An Open Distributed
Programming Paradigm� In Proceeding of the Fourth ACM SIGPLAN Sympo�
sium on Principles and Practice of Parallel Programming� �����

�Ahmed and Gelernter� ��a� Shakil Ahmed and David Gelernter� A Higher�Level Envi�
ronment for Parallel Programming� Technical Report YALEU�DCS�RR�����
Yale University� �����

�Ahmed and Gelernter� ��b� Shakil Ahmed and David Gelernter� Program Builders as
Alternatives to High�Level Languages� Technical Report YALEU�DCS�RR�
���� Yale University� �����

�Aho and Sethi et al� �
� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers�
Principles� Techniques and Tools� Addison�Wesley� ���
�

�Ahuja and Carriero et al� ��� Sudhir Ahuja� Nicholas J� Carriero� David H� Gelernter�
and Venkatesh Krishnaswamy� Matching Language and Hardware for Paral�
lel Computation in the Linda Machine� IEEE Transactions on Computers�
���� 	�
���
�� �����

�Amadio and Cardelli� ��� Roberto M� Amadio and Luca Cardelli� Subtyping Recursive
Types� In Proceedings of the ��th annual ACM Symposium on Principles of
Programming Languages� pages �������� �����

��

http://www.robert-tolksdorf.de

�Anderson and Shasha� ��� Brian G� Anderson and Dennis Shasha� Persistent Linda	
Linda " Transactions " Query Processing� In J�P� Ban'atre and D� Le M(etayer�
editors� Research Directions in High�Level Parallel Programming Languages�
number ��� in LNCS� pages ������� Springer� �����

�Andreoli and Ciancarini et al� �
a� Jean�Marc Andreoli� Paolo Ciancarini� and Remo
Pareschi� Interaction Abstract Machines� Technical Report �
�
�� ECRC� ���
�

�Andreoli and Ciancarini et al� �
b� JM Andreoli� P� Ciancarini� and R� Pareschi� Par�
allel Searching with Multisets�as�Agents� Technical Report TR ����
� Univer�
sity of Pisa� ���
�

�Andreoli and Pareschi� ��� Jean�Marc Andreoli and Remo Pareschi� Linear Objects	
Logical Processes with Built�in Inheritance� New Generation Computing� ����
� 	�������� �����

�Baier and Majster�Cederbaum� ��� Christel Baier and Mila E� Majster�Cederbaum�
The connection between an event structure semantics and an operational se�
mantics for TCSP� Acta Informatica� ��	������� �����

�Bakken and Schlichting� ��� David E� Bakken and Richard D� Schlichting� Tolerating
failures in the bag�of�tasks programming paradigm� In Proceedings of the ��st
International Symposium on Fault�Tolerant Computing� pages
���
��� �����

�Bakken and Schlichting� ��� David E� Bakken and Richard D� Schlichting� Supporting
Fault�Tolerant Parallel Programming in Linda� Technical Report TR ������
Department of Computer Science� The University of Arizona� �����

�Ban'atre and Le M(etayer� ��� Jean�Pierre Ban'atre and Daniel Le M(etayer� Introduc�
tion to Gamma� In J�P� Ban'atre and D� Le M(etayer� editors� Research Di�
rections in High�Level Parallel Programming Languages� number ��� in LNCS�
pages ����
�
� Springer� �����

�Ban'atre and Le M(etayer� ��� Jean�Pierre Ban'atre and Daniel Le M(etayer� Program�
ming by Multiset Transformation� Communications of the ACM� �
�� 	�������
�����

�Beguelin and Dongarra et al� ��� Adam Beguelin� Jack Dongarra� Al Geist� Robert
Manchek� and Vaidy Sunderam� A Users� Guide to PVM Parallel Virtual
Machine� Oak Ridge National Laboratory� �����

�Berndt� ��� D� Berndt� C�Linda reference Manual �DRAFT	 Beta Version �
�� Scien�
ti�c Research Associates� �����

�Berry and Boudol� ��� G(erard Berry and G(erard Boudol� The Chemical Abstract Ma�
chine� In Proceeding of the �
th ACM Symposium on Principles of Program�
ming Languages� pages ������ �����

http://www.robert-tolksdorf.de

�Birman� ��� Kenneth P� Birman� The Process Group Approach to Reliable Distributed
Computing� Technical Report TR����
�
� Department of Computer Science�
Cornell University� �����

�Birman and Cooper et al� ��� K� Birman� R� Cooper� T� Joseph� K� Marzullo� M� Mak�
gangou� K� Kane� F� Schmuck� and M� Wood� The ISIS System Manual� Ver�
sion �
�� The ISIS Project� �����

�Birman and Schiper et al� ��� Kenneth Birman� Andr(e Schiper� and Pat Stephenson�
Lightweight Causal and Atomic Group Multicast� ACM Transactions on Com�
puter Systems� ��� 	
�
����� �����

�Bjornson� ��� R� Bjornson� A Linda User�s Manual� Scienti�c Computing Associates�
�����

�Bjornson and Carriero et al� ��� Robert Bjornson� Nicholas Carriero� David Gelern�
ter� and Jerrold Leichter� Linda� the Portable Parallel� Technical Report
YALE�DCS�RR��
�� Yale University� ����� revised �����

�Borrmann and Herdieckerho�� ��� Lothar Borrmann and Martin Herdieckerho�� Linda
integriert in Modula�
 � ein Sprachkonzept f�ur portable parallele Software� In
U� Kastens and F�J� Rammig� editors� Architektur und Betrieb von Rechensys�
temen� pages ��
����� GI�ITG� �����

�Bowman and Debray et al� ��� Mic Bowman� Saumya K� Debray� and Larry L� Peter�
son� Reasoning About Naming Systems� ACM Transactions on Programming
Languages and Systems� ���� 	�����
�� �����

�Broadbery and Playford� ��� Peter Broadbery and Keith Playford� Using Object�
Oriented Mechanisms to Describe Linda� In Greg Wilson� editor� Linda�Like
Systems and Their Implementation� pages ���

� Edinburgh Parallel Comput�
ing Centre� ����� Technical Report ������

�Butcher� ��� Paul Butcher� Lucinda� In Greg Wilson� editor� Linda�Like Systems and
Their Implementation� pages
����� Edinburgh Parallel Computing Centre�
����� Technical Report ������

�Butcher and Zedan� ��a� Paul Butcher and Hussein Zedan� Lucinda � A Polymorphic
Linda� In J�P� Ban'atre and D� Le M(etayer� editors� Research Directions in High�
Level Parallel Programming Languages� number ��� in LNCS� pages �

���
�
Springer� �����

�Butcher and Zedan� ��b� Paul Butcher and Hussein Zedan� Lucinda � An Overview�
ACM SIGPLAN Notices�

�� 	������� �����

�Butler and Leveton et al� ��� Ralph M� Butler� Alan L� Leveton� and Ewing L� Lusk�
p��Linda� A Portable Implementation of Linda� �����

http://www.robert-tolksdorf.de

�Butler and Lusk� �
� Ralph Butler and Ewing Lusk� User�s guide to the p� parallel
programming system� Technical Report ANL��
���� Argonne National Labo�
ratory� Mathematics and Computer Science Division� ���
�

�Callahan and Purtilo� ��� John R� Callahan and James M� Purtilo� A Packaging Sys�
tem for Heterogeneous Execution Environments� Technical Report
��
� Uni�
versity of Maryland CSD� �����

�Callsen and Cheng et al� ��� Christian J� Callsen� Ivan Cheng� and Per L� Hagen� The
AUC C"" Linda System� In Greg Wilson� editor� Linda�Like Systems and
Their Implementation� pages ������ Edinburgh Parallel Computing Centre�
����� Technical Report ������

�Cardelli� ��� Luca Cardelli� Structural Subtyping and the Notion of Power Type� In
Proceedings of the ��th annual ACM Symposium on Principles of Programming
Languages� pages ������ �����

�Carriero and Gelernter� �
� Nicholas Carriero and David Gelernter� The S�Net�s Linda
Kernel� ACM Transactions on Computer Systems� ��
 	�����
�� ���
�

�Carriero and Gelernter� ��� Nicholas Carriero and David Gelernter� Applications Ex�
perience with Linda� In Proceedings of the ACM�SIGPLAN PPEALS �����
pages �������� �����

�Carriero and Gelernter� ��a� Nicholas Carriero and David Gelernter� How to Write
Parallel Programs	 A Guide to the Perplexed� ACM Computing Surveys�

��� 	�
������ �����

�Carriero and Gelernter� ��b� Nicholas Carriero and David Gelernter� Linda in Context�
Communications of the ACM� �
�� 	�������� �����

�Carriero and Gelernter� ��c� Nicholas Carriero and David Gelernter� Tuple analysis
and partial evaluation strategies in the Linda precompiler� In Proceedings of
the �nd Workshop on Languages and Compilers for Parallelism� �����

�Carriero and Gelernter� ��� Nicholas Carriero and David Gelernter� New Optimization
Strategies for the Linda Pre�Compiler� In Greg Wilson� editor� Linda�Like Sys�
tems and Their Implementation� pages ������ Edinburgh Parallel Computing
Centre� ����� Technical Report ������

�Carriero and Gelernter et al� ��� Nicholas Carriero� David Gelernter� and Leonore
Zuck� Bauhaus�Linda� In Workshop on Languages and Models for Coordi�
nation� European Conference on Object Oriented Programming� �����

�Carroll�
�� Lewis Carroll� The Annotated Alice � Alice�s Adventures in Wonderland �
Through the Looking Glass� Penguin Books� ��
�� Edited by Martin Gardner�

http://www.robert-tolksdorf.de

�Chiba and Kato et al� ��� Shigeru Chiba� Kazuhiko Kato� and Takashi Masuda� Ex�
ploiting a Weak Consistency to Implement Distributed Tuple Space� In Pro�
ceedings of the ��th IEEE International Conference on Distributed Computing
Systems ICDCS ��� pages ��
��
�� �����

�Cho��� Chorus Supercomputer Inc� New York� Linda�C Documentation� �����

�Ciancarini� ��� Paolo Ciancarini� Coordinating Rule�Based Software Processes with
ESP� ACM Transactions on Software Engineering�
�� 	
���

�� ����� Also as
technical report UBLCS������ University of Bologna�

�Ciancarini and Guerrini� ��� P� Ciancarini and N� Guerrini� Linda meets Minix� Op�
erating Systems Reviews�
��� 	�
��
� �����

�Ciancarini and Jensen et al� �
� Paolo Ciancarini� Keld K� Jensen� and Dani Yankele�
vich� The Semantics of a Parallel Language based on a Shared Dataspace�
Technical Report TR

��
� University of Pisa� ���
�

�Cog��a� Cogent Research Inc� Process creation in QIX� ����� Technical Note �����

�Cog��b� Cogent Research Inc�� Beaverton� Oregon� XTM Product Speci�cation� �����

�Cog��� Cogent Research Inc� Kernel Linda Speci�cation � Version �
�� June �����
Technical Note ������

�Dai� ��� Kechang Dai� Large�Grain Data�ow Computation and Its Architectural Sup�
port� PhD thesis� TU Berlin� �����

�Dai and Giloi� ��a� Kechang Dai and Wolfgang K� Giloi� A Basic Architecture Sup�
porting LGDG Computation� In Proceedings of the International Conference
on Supercomputing� pages
����� �����

�Dai and Giloi� ��b� Kechang Dai and Wolfgang K� Giloi� A Non�Branch RISC Kernel
for Large�Grain Data�ow Computations� In Proceedings of the V
 International
Workshop on Parallel Processing by Cellular Automata and Arrays� Berlin�
pages �������� �����

�Darlington and Reeve� ��� J� Darlington and M� Reeve� ALICE	 A MultiProcessor
Reduction Machine for thhe Parallel Evaluation of Applicative Languages� In
Proceedings of the ACM Conference on Functional Programming Languages and
Computer Architecture� �����

�De Nicola and Pugliese� ��� Rocco De Nicola and Rosario Pugliese� Testing Linda	
Observational Semantics for an Asynchronous Language� Technical report�
�����

�Donnelly and Stallman� �
� Charles Donnelly and Richard Stallman� Bison � The
YACC�compatible Parser Generator� Bison Version �
��� December ���
�

http://www.robert-tolksdorf.de

�Ehrig and Mahr� ��� H� Ehrig and B� Mahr� Fundamentals of Algebraic Speci�cations
�� EATACS Monographs� Springer� �����

�Gayda� �
� Christian Gayda� DOKMA Ein Dokumentenorientiertes Kommunikations�
modell f�ur medizinische Anwendungen als Basis f�ur ein Rollensystem im medi�
zinischen Umfeld� PhD thesis� TU�Berlin� ���
� In German�

�Gelernter� �
� D� Gelernter� An integrated microcomputer network for experiments in
distributed programming� PhD thesis� SUNY at Stony Brooks� ���
�

�Gelernter� ��� David Gelernter� Generative Communication in Linda� ACM Transac�
tions on Programming Languages and Systems� ��� 	�����
� �����

�Gelernter� ��� David Gelernter� Multiple tuple spaces in Linda� In E� Odijk� M� Rem�
and J��C� Syre� editors� PARLE ���� Vol
 II� Parallel Languages� LNCS �

�
pages
��
�� �����

�Gelernter� ��� David Gelernter� Mirror Worlds� Oxford University Press� New York�
����� ISBN �������
��
�
�

�Gelernter and Carriero� �
� David Gelernter and Nicholas Carriero� Coordination Lan�
guages and their Signi�cance� Communications of the ACM� ���
 	�������
���
�

�Gelernter and Philbin� ��� David Gelernter and James Philbin� Spending Your Free
Time� BYTE� ���� 	
���
��� �����

�Hansen and Kutsche et al� ��� Horst Hansen� Ralf�Detlef Kutsche� and Joachim Stef�
fens� The PADKOM System Model � an Open Platform for Medical Applica�
tions in a Distributed Multimedia Environment� In Jan de Meer and Volker
Heymer� editors� Proceedings of the International IFIP Workshop on Open Dis�
tributed Processing� �����

�Hansen and Kutsche� ��� H� Hansen and R��D� Kutsche� Medical Applications of ODP�
In J� de Meer� B� Mahr� and S� Storp� editors� Proceedings of the International
IFIP Conference on Open Distributed Processing� pages
����� North�Holland�
�����

�Hasselbring� ��� W� Hasselbring� Combining SETL�E with Linda� In Greg Wilson�
editor� Linda�Like Systems and Their Implementation� pages ������ Edinburgh
Parallel Computing Centre� ����� Technical Report ������

�Hasselbring� �
� W� Hasselbring� A Formal Z Speci�cation of ProSet�Linda� Technical
Report ����
� University of Essen� ���
�

�Hasselbring� ��a� W� Hasselbring� Formale Spezi�kation und Prototyping im Sprachen�
twurf	 Eine Fallstudie� Technical Report ����
� University of Essen� ����� Also
in Proceedings of GI�Fachtagung Softwaretechnik� Dortmund� Germany� �����

http://www.robert-tolksdorf.de

�Hasselbring� ��b� W� Hasselbring� Prototyping Parallel Algorithms with ProSet�
Linda� In Jens Volkert� editor� Proceedings of the �nd International Conference
of the Austrian Center for Parallel Computation� number ��� in LNCS� pages
�������� Springer� ����� Also as �Hasselbring� ��c��

�Hasselbring� ��c� W� Hasselbring� Prototyping Parallel Algorithms with ProSet�
Linda� Technical Report ����
� University of Essen� ����� Also as �Hasselbring�
��b��

�Hennessy� ��� M� Hennessy� The Semantics of Programming Languages� An Elemen�
tary Introduction using Structural Operational Semantics� Wiley Press� �����

�Hopcroft and Ullman� ��� John E� Hopcroft and Je�rey D� Ullman� Introduction to
automata theory� languages and computation� Addison�Wesley� �����

�Hupfer and Kaminsky et al� ��� Susanne Hupfer� David Kaminsky� Nicholas Carriero�
and David Gelernter� Coordination Applications of Linda� In J�P� Ban'atre and
D� Le M(etayer� editors� Research Directions in High�Level Parallel Program�
ming Languages� number ��� in LNCS� pages �������� Springer� �����

�IBM��� IBM Corp� SOMobjects Developer Toolkit � Technical Overview� Version �
��
November �����

�ISO� ��� ISO� Quality management and quality system elements � Part
	 Guidelines
for services� ����� International standard ISO �����
�

�ISO�IEC JTC��SC
�� ��� ISO�IEC JTC��SC
�� Information Technology � Open Dis�
tributed Processing � ODP Trading Function� WG� Working Document� �����

�ISO�IEC JTC��SC
��WG�� ��� ISO�IEC JTC��SC
��WG�� Basic Reference Model
of Open Distributed Processing � Part �	 Architectural Semantics� Working
Document� �����

�ISO�IEC JTC��SC
��WG�� ��a� ISO�IEC JTC��SC
��WG�� Basic Reference
Model of Open Distributed Processing � Part ���� �����

�ISO�IEC JTC��SC
��WG�� ��b� ISO�IEC JTC��SC
��WG�� Basic Reference
Model of Open Distributed Processing � Part �	 Overview� Working Draft�
�����

�ISO�IEC JTC��SC
��WG�� ��a� ISO�IEC JTC��SC
��WG�� Basic Reference
Model of Open Distributed Processing � Part
	 Descriptive Model� Draft
International Standard� ����� ISO�IEC DIS ����
�
� ITU�T Draft Rec� X���
�

�ISO�IEC JTC��SC
��WG�� ��b� ISO�IEC JTC��SC
��WG�� Basic Reference
Model of Open Distributed Processing � Part �	 Prescriptive Model� Draft
International Standard� ����� ISO�IEC DIS�E ����
��� ITU�T Rec� X�����

�Jagannathan� ��� Suresh Jagannathan� Semantics and Analysis of First�Class Tuple
Spaces� Technical Report YALEU�DCS�RR����� Yale University� �����

http://www.robert-tolksdorf.de

�Jagannathan� ��� Suresh Jagannathan� Expressing Fine�Grained Parallelism Using
Concurrent Data Structure� In J�P� Ban'atre and D� Le M(etayer� editors� Re�
search Directions in High�Level Parallel Programming Languages� number ���
in LNCS� pages ����
� Springer� �����

�Jellinghaus� ��� Robert Jellinghaus� Ei�el Linda	 An Object�Oriented Linda Dialect�
ACM SIGPLAN Notices�
���
 	������ �����

�Jensen and Riksted� ��� Keld K� Jensen and Gorm E� Riksted� Linda � A Distributed
Programming Paradigm� Master�s thesis� University of Aalborg� �����

�Jopp� ��� Klaus Jopp� Wem geh�ort dieser Ko�er� Die Zeit� page

� July�

 ����� In
German�

�Kane� ��� A� J� Kane� A Simple Linda�C Parallel Processing Environment For Sym�
metric Multi�processing VAX�VMS Systems� Master�s thesis� East Tennessee
State University� �����

�Kaplan and Love et al� �
� Simon Kaplan� Christopher Love� Alan M� Carroll� and
Daniel M� LaLiberte� Epoch �
�� a modi�ed version of GNU Emacs� ���
�

�Kornfeld� ��� Willian A� Kornfeld� ETHER � A Parallel Problem Solving System� In
Proceedings of the �th International Joint Conference on Arti�cial Intelligence
IJCAJ� Tokyo� �����

�Krishnaswamy and Ahuja et al� ��� Venkatesh Krishnaswamy�
Sudhir Ahuja� Nicholas J� Carriero� and David Gelernter� The Architecture
of a Linda Coprocessor� In Proceedings of the ��th Annual International Sym�
posium on Computer Architecture� pages
���
��� �����

�Kutsche� ��� Ralf�Detlef Kutsche� A type�oriented approach to the speci�cation and
formal semantics of a distributed� heterogeneous object system� PhD thesis�
TU�Berlin� �����

�Leler� ��� Wm Leler� Linda Meets Unix� IEEE Computer�
��
 	������ �����

�Loogen and Goltz� ��� Rita Loogen and Ursula Goltz� Modelling nondeterministic con�
current processes with event structures� Fundamenta Informaticae� ��	������
�����

�LRW��� LRW Systems� VAX Linda�C Installation Guide� August ����� Order Num�
ber VLN�IG�����

�LRW��a� LRW Systems� VAX Linda�C Release Notes� April ����� Order Number
VLN�RN�����

�LRW��b� LRW Systems� VAX Linda�C User�s Guide� September ����� Order Num�
ber VLN�UG���
�

http://www.robert-tolksdorf.de

�Mahr� ��� Bernd Mahr� Applications of Type Theory� In M��C� Gaudel and J��P�
Jouannaud� editors� Proceedings of TAPSOFT���� Theory and Practice of Soft�
ware Development� LNCS

�� pages �������� Springer� �����

�Mahr and Str�ater et al� ��� B� Mahr� W� Str�ater� and C� Umbach� Fundamentals of
a Theory of Types and Declarations� Technical Report KIT�Report �
� TU�
Berlin� �����

�Mahr and Tolksdorf� ��� Bernd Mahr and Robert Tolksdorf� Coordination and Logic
Programming� In H� Reichel� editor� Informatik� Wirtschaft� Gesellschaft� Pro�
ceedings of ��
 GI Jahrestre�en ���� � Fachgespr�ach Kooperation und Konkur�
renz� pages �������� �����

�Marzetta� �
� Markus Marzetta� Universes in the theories of types and names� In
E� B�orger� G� J�ager� H� Kleine B�uning� S� Martini� and M�M� Richter� editors�
Proc
 of the �th Workshop on Computer Science Logic� LNCS ��
� pages ����
���� Springer� ���
�

�Matsuoka� ��� Satoshi Matsuoka� Tuple Space Communication in Distributed Object�
Oriented Computing� Master�s thesis� University of Tokyo� �����

�Matsuoka and Kawai� ��� Satoshi Matsuoka and Satoru Kawai� Using Tuple Space
Communication in Distributed Object�Oriented Languages� In Conference Pro�
ceedings OOPSLA ���� pages
�
�
��� �����

�Matthews� ��� Stuart R� Matthews� The Speci�cation and Design of a Nondetermin�
istic Data Structure Using CCS� In C� Rattay� editor� Speci�cation and Veri��
cation of Concurrent Systems� pages �����
�� Springer and British Computer
Society� �����

�Mattson and Bjornson et al� �
� Timothy G� Mattson� Rob Bjornson� and David
Kaminsky� The C�Linda Language for Networks of Workstations� In Work�
shop on Cluster Computing� Florida State Universit� ���
�

�Monro� ��� G�P� Monro� The Concept of Multiset� Zeitschrift f�ur Mathematische Logik
und Grundlagen der Mathematik� ��	�������� �����

�Moor� �
� Ian W� Moor� An Applicative Compiler for a Parallel Machine� In Pro�
ceedings of the SIGPLAN ��� Symposium on Compiler Construction� pages

���
��� ���
� ACM SIGPLAN Notices� ���
 �

�Mussat� ��� Louis Mussat� Parallel Programming with Bags� In J�P� Ban'atre and
D� Le M(etayer� editors� Research Directions in High�Level Parallel Program�
ming Languages� number ��� in LNCS� pages
���
��� Springer� �����

�Myers and Purtilo� �
� Heidi E� Myers and James M� Purtilo� Interface Type Checking
for Large C Applications� Computer Languages� ���
 	�������� ���
�

�Narem Jr�� ��� James E� Narem Jr� An Informal Operational Semantics of C�Linda
V
����� Technical Report YALEU�DCS�TR����� Yale University� �����

http://www.robert-tolksdorf.de

�NeX��� NeXT Computer� Inc� OpenStep Speci�cation � Summary Version� �������
Draft� �����

�OMG��� Digital Equipment Corporation� Hewlett�Packard Company� HyperDesk Cor�
poration� NCR Corporation� Object Design� Inc�� and SunSoft� Inc� The Com�
mon Object Request Broker� Architecture and Speci�cation� �����

�OMG�
� Object Management Group� OMG Architecture Guide Chapter �� The OMG
Object Model� ���
�

�Padget and Broadbery et al� ��� Julian Padget� Peter Broadbery� and David Hutchin�
son� Mixing Concurrency Abstraction and Classes� In J�P� Ban'atre and
D� Le M(etayer� editors� Research Directions in High�Level Parallel Program�
ming Languages� number ��� in LNCS� pages ������
� Springer� �����

�Paxson� �
� Vern Paxson� FLEX Lexical Analyzer Generator� ���
�

�Pinakis� ��� James Pinakis� The Inclusion of the Linda Tuple Space Operations in
a Pascal�based Concurrent Language� In Proceedings of the ��th Australian
Computer Science Conference� �����

�Polze� ��� Andreas Polze� The Object Space Approach	 decoupled communication in
C""� In Proceedings of TOOLS USA���� �����

�Polze� ��� Andreas Polze� Objektorientierung und lose gekoppelte Kommunikation als
Basis f�ur die Entwicklung o�ener� verteilter Anwendungssysteme� PhD thesis�
Freie Universit�at Berlin� ����� In German�

�Polze and L�ohr� �
� Andreas Polze and Klaus�Peter L�ohr� Kommunikationsstruc�
turen in nebenl�au�gen Systemen und ihre programmiersprachliche Realisierung�
Technical report� Institut f�ur Informatik� FU Berlin� ���
� In German�

�Pooyan� �
� Ladan Pooyan� ��Structures as Semantic Models of the +�Calculus� Mas�
ter�s thesis� TU�Berlin� ���
�

�Purtilo� ��� James M� Purtilo� The Polylith Software Bus� Technical Report
�
��
University of Maryland CSD� �����

�Purtilo and Atlee� ��� James M� Purtilo and Joanne M� Atlee� Module Reuse by In�
terface Adaption� Software�Practice and Experience�
��
 	�������� �����

�Purtilo and Jalote� ��� James M� Purtilo and Pankaj Jalote� An Environment for Pro�
totyping Distributed Applications� In Proceedings of the �th International Con�
ference on Distributed Computing Systems� pages �������� �����

�Raymond� ��� K�A� Raymond� Reference Model of Open Distributed Processing	 a
Tutorial� In J� de Meer� B� Mahr� and S� Storp� editors� Proceedings of the
International IFIP Conference on Open Distributed Processing� pages �����
North�Holland� �����

http://www.robert-tolksdorf.de

�Schoinas� ��a� G� Schoinas� Issues on the implementation of PrOgramming SYstem for
distriButed appLications� University of Crete� �����

�Schoinas� ��b� G� Schoinas� POSYBL	 Implementing the Blackboard Model in a Dis�
tributed Memory Environment Using Linda� In Greg Wilson� editor� Linda�
Like Systems and Their Implementation� pages ������
� Edinburgh Parallel
Computing Centre� ����� Technical Report ������

�Seyfarth and Bickham et al� ��� Benjamin R� Seyfarth� Jerry L� Bickham� and Manga�
iarkarasi Arumughum� Glenda Installation and Use� �����

�Shannon and Snodgrass� ��� Karen Shannon and Richard Snodgrass� Mapping the In�
terface Description Language Type Model into C� IEEE Transactions on Soft�
ware Engineering� ����� 	��������
� �����

�Soley� ��� Mark Soley� Richard� An object model for integration� Computer Standards
� Interfaces� ���
�� 	�����

� �����

�SRA� Scienti�c Research Associates� C�Linda User�s Guide � Reference Manual�

�Str�ater� �
� Werner Str�ater� �T � Eine Logik mit Selbstreferenz und totalem Wahrheits�
wert� PhD thesis� Technische Universit�at Berlin� ���
� In German�

�Subrahmanyam� ��� P� A� Subrahmanyam� Nondeterminism in Abstract Data Types�
In S� Evan and O� Kariv� editors� Automata� Languages and Programming�
LNCS ���� pages �����
�� Springer� �����

�SUNa� External Data Representation	 Protocol Spec�ciation�

�SUNb� External Data Representation	 Sun Technical Notes�

�Sutcli�e and Pinakis� ��� G� Sutcli�e and J� Pinakis� Prolog�Linda � An Embedding
of Linda in muProlog� In C�P� Tsang� editor� Proceedings of the AI��� � the
�th Australian Conference on Arti�cial Intelligence� pages �������� �����

�Sutcli�e and Pinakis� ��� Geo� Sutcli�e and James Pinakis� Prolog�D�Linda	 An Em�
bedding of Linda in SICStus Prolog� Technical Report ����� The University of
Western Australia� Department of Computer Science� �����

�TRI��� FEST Project Consortium� NUCLEUS Project Consortium� SHINE Project
Consortium	 Integrated TRILOGY Framework� ����� AIM�Project A
����

�Various authors� ��� Various authors� Technical Correspondence on �Linda in Con�
text�� Communications of the ACM� �
��� 	�
����
��� �����

�Westbrook and Zuck� ��� Je�rey Westbrook and Leonore Zuck� Adaptive Algorithms
for PASO Systems� In Proceeding of Conference on Principles of Distributed
Computing PODC���� �����

http://www.robert-tolksdorf.de

�Winskel� ��� Glynn Winskel� An introduction to event structures� In J�W� de Bakken�
W��P� de Roever� and G� Rozenberg� editors� Linear Time� Branching Time
and Partial Order in Logics and Models for Concurrency� LNCS ���� pages
�
������ Springer� �����

�Wittkugel� ��� Torsten Wittkugel� Synchronisationsmechanismen in verteilten Objekt�
systemen� PhD thesis� TU�Berlin� ����� In German�

�Yeo and Ananda et al� ��� A�K� Yeo� A�L� Ananda� and E�K� Koh� A Taxonomy of Is�
sues in Name Systems Design and Implementation� Operating Systems Reviews�

��� 	����� �����

�Zenith� ��a� Steven Ericsson Zenith� The Axiomatic Characterization of Ease� In Greg
Wilson� editor� Linda�Like Systems and Their Implementation� pages ������
�
Edinburgh Parallel Computing Centre� ����� Technical Report ������

�Zenith� ��b� Steven Ericsson Zenith� A Rationale for Programming with Ease� In J�P�
Ban'atre and D� Le M(etayer� editors� Research Directions in High�Level Parallel
Programming Languages� number ��� in LNCS� pages ������
� Springer� �����

This text was processed using the chanmis�style

http://www.robert-tolksdorf.de

		2018-03-30T18:54:16+0200
	Robert Tolksdorf

